Download presentation
Presentation is loading. Please wait.
Published byMaude Lamb Modified over 9 years ago
1
© UPC IGARSS 2011 Vancouver 24-29 July 2011 1 / 13 First results of the PAU Synthetic Aperture Radiometer I. Ramos-Perez, G. Forte. X. Bosch-Lluis, E. Valencia, N. Rodriguez-Alvarez, H. Park, M. Vall·llossera, and A. Camps E-mail: isaacramos@tsc.upc.edu Remote Sensing Lab Universitat Politècnica de Catalunya (UPC) – Barcelona, Spain and IEEC-CRAE/UPC 28 th of July of 2011
2
© UPC IGARSS 2011 Vancouver 24-29 July 2011 2 / 13 Outline 1.Review of PAU-SA instrument 2.Potential improvements for future SMOS – like missions 3.Use of PRN Signals for: Calibration, FWF Determination, and receiver’s frequency response determination 4.Inter-calibration phase determination in post-processing and real-time systems 5.Some Imaging results: Impulse response (near field) Angular resolution (near field) GPS satellites constellation 6.Conclusions
3
© UPC IGARSS 2011 Vancouver 24-29 July 2011 3 / 13 1. PAU-SA Instrument PAU-SA in the robotic arm PAU-RAD PAU-GNSS-R PAU-IR 8 m
4
© UPC IGARSS 2011 Vancouver 24-29 July 2011 4 / 13 ParameterMIRAS/SMOSPAU-SA Comments Frequency operationL-band (1400 - 1427 MHz) L-band (1575.42 MHz) L1 of GPS signal Same frequency both Radiometry and GPS Reflectrometry Bandwidth19 MHz2.2 MHz Spatial correlation effects negligible Larger T Arm size4 m1.3 m AltitudeGlobal observation, LEO, orbital altitudeground-based - Antenna type Patch antenna with V & H polarizations (not simultaneous) Patch antenna with V & H polarizations (simultaneous) Full-pol (non-sequential) Number of antennas per arm238+1 (dummy) Improve antenna pattern similarity Number total antennas6931 - Antenna spacing 0.875 at 1400 MHz, (21 cm) 0.816 at 1575.42 MHz, (15.5 cm) Increase the alias-free field of view Receiver type single polarization (1 per element) dual polarization (2 per element) Full-pol (non-sequential) Topology of the LO down- converter Distributed LO (groups of 6 elements) Centralized reference clock + internal LO generated in each receiver Reduce LO leakage and correlated offset Quantization 1 bit (Inside the LICEF ) 8 bits IF sub-sampling using a external ADC Digital I/Q demodulation Digital Power measurement Digital LPF I/Q conversionAnalogDigital Elimination quadrature error Frequency response shaped by Analog RF filterDigital low- pass filter Mass reduction, quasi perfect matching, no temperature and aging drifts Power measurement system (PMS) Analog (Schottky diode)Digital (FPGA) Mass reduction, Thermal drifts minimized Calibration by Noise Injection Injection of Distributed noise Injection of Centralized noise or PRN signal Simpler calibration. Calibration of non-separable errors Recs’ freq. response estimation Image capabilitiesDual-pol or full-pol (sequential)Full-pol (non-sequential) Necessary to GNSS-R applications 2. Potential improvements for future SMOS’s
5
© UPC IGARSS 2011 Vancouver 24-29 July 2011 5 / 13 3.1. Use of PRN Signals for: FWF determination FWF(Y1Y2) Overcomes limitations of centralized noise injection PRN with SR > 5 (flat spectrum such as Noise Source) Estimation of FWF at =0 with 1B/2L Amplitude error < 0.25% Phase error < 1º Centralized Calibration using: Noise Source or PRN sequences SR=0.5 SR=1 SR=5 I. Ramos-Pérez et al., “Use of Pseudo-Random Noise sequences in microwave radiometer calibration”, MICRORAD 2008 I. Ramos-Pérez et al., “Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals” Sensors 2009 ISSN 1424-8220
6
© UPC IGARSS 2011 Vancouver 24-29 July 2011 6 / 13 A S PRN +S R2 S PRN +S R1 3.2. Use of PRN Signals for: Receiver’s frequency response Correlation of receivers’ output with local replica of PRN signal injected allows individual frequency responses to be measured (amplitude and phase) Using: PRN sequences
7
© UPC IGARSS 2011 Vancouver 24-29 July 2011 7 / 13 4.1. Inter-calibration time in real-time systems Data: PAU-SA instrument Measurement: τ =1 s., every 2 min Off-line Processing Decimate to simulate lack of data Best interpolation Methods: Linear Pchip Spline fft INTERPOLATION ERROR: No aliasing Decimation factor 4 (8 min) Conclusion: Real-time systems require much more often calibration time to avoid estimation errors to propagate and increase rapidly EKF B ~ 1 mHz T inter-cal max = 1 / 2·B ~ 4 min If T inter-cal > 4 min Aliasing interpolation phase error Real-time Processing Prediction, e.g. with Extended Kalman filter (EKF)
8
© UPC IGARSS 2011 Vancouver 24-29 July 2011 8 / 13 4.2. Inter-calibration time in off-line systems: SMOS Data: SMOS (L1 level) Commissioning Phase Measurement: τ =1.2 s., every 2 min Decimation Interpolation with different methods No aliasing Optimum inter-calibration time Best interpolation Methods: fft Interp (Sinc) Spline Max inter-calibration ~7 min (decimation factor ~ 3.5) All visibilities (fft interpolation) At present: 10 min, ~ 1º But at ~7 min, < 0.3º And << 7 min, marginal improvement in Optimum interpolation B ~ 1.25 mHz T inter-cal max = 1 / 2·B ~ 7 min If T inter-cal > 7 min Aliasing interpolation phase error
9
© UPC IGARSS 2011 Vancouver 24-29 July 2011 9 / 13 5.1. Preliminary results (i): Impulse response FFT Point Source : PRN signal (-70 dBm) Moving the Instrument (no temperature control) El +/- 10º, +/- 20º Az +/- 10º, +/- 20º Pol H Az= 0º El= 0º Pol H Az= +10º El= 0º Pol H Az= +20º El= 0º Pol V Az= 0º El= +10º Pol V Az= 0º El= +20º PRN Signal Rectangular window for visibility samples Antenna 1 PRN Source 1 Instrumen t
10
© UPC IGARSS 2011 Vancouver 24-29 July 2011 10 / 13 5.2. Preliminary results (ii): Angular resolution FFT Point Source : PRN signals (-70 dBm) 7 antennas per arm + rectangular window Sources – PAU-SA distance at 10 m Angular resolution (ξ,η) ~ 5.7º 2 PRN Signals Rectangular window PRN Source 1 Antenna 1 PRN Source 2 Antenna 2 Instrumen t 1 m 2 m 3 m 4 m Antennas separation at: (Near field) No near-to-far field transformation applied
11
© UPC IGARSS 2011 Vancouver 24-29 July 2011 11 / 13 5.3. Preliminary results (iii): GPS satellites FFT GPS Signal Rectangular window UTC 12:44:03 K UTC 12:22:03 K UTC 12:00:03 K UTC 11:38:03 K UPC location GPS orbit
12
© UPC IGARSS 2011 Vancouver 24-29 July 2011 12 / 13 5.4. Preliminary results (iv): GPS satellites K
13
© UPC IGARSS 2011 Vancouver 24-29 July 2011 13 / 13 6. Summary PAU-SA Instrument and design drivers briefly described Successful test of use of PRN signals instead of noise for: Calibration, FWF, and receiver’s frequency response measurement Optimum phase inter-calibration for off-line and real-time instruments. Real-time processing (PAU-SA): due to a thermal drift, best results using: linear, pchip (piece wise cubic), spline, and fft interpolation techniques (inter-calibration time ~ 4 min) Off-line processing (SMOS): Best results using: FFT or sinc interp, and reducing inter-calibration time ~ 7 min. EKF to estimate phase evolution in a real-time system (PAU-SA) larger error more frequent calibration required (~ 1 min) Image reconstruction using different PRN sources Impulse response (one source in different positions of FOV) Angular resolution (two sources with different angular separation) ~ 0.1 Zenith imaging of real GPS satellites: tracking GPS constellation
14
© UPC IGARSS 2011 Vancouver 24-29 July 2011 14 / 13 Mr. Isaac Ramos Responsible for the design and manufacturing of the instrument Thank you!
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.