Presentation is loading. Please wait.

Presentation is loading. Please wait.

The GENIUS dark matter project Laura Baudis Stanford University.

Similar presentations


Presentation on theme: "The GENIUS dark matter project Laura Baudis Stanford University."— Presentation transcript:

1 The GENIUS dark matter project Laura Baudis Stanford University

2 The GENIUS collaboration MPIK Heidelberg Kurchatov Institute Moscow Dubna Nijnii Novgorod...

3 Direct detection of WIMPs elastic scattering off nuclei (Goodman, Witten 1985): look for the energy deposited by the recoiling nucleus  0 ~ 0.3 - 0.5 GeV/cm 3 v ~ 220 km/s, MB-distrib good candidate from SUSY: LSP m = 10 - 1000 GeV  < 10 -41 cm 2 event rate < 1 event/kg d recoil energy < 100 keV dn/dE r ErEr Expected recoil spectrum

4 muon g-2 measurement If due to SUSY: upper bound on the neutralino mass: 500 GeV minimum cross section is large: 10 -9 pb CDMS I CDMS II Baltz-Gondolo 01 GENIUS

5 GErmanium in liquid NItrogen Setup L. Baudis et al., NIMA 99 Proposal: hep-ph/9910205 array of 40 natural HPGe detectors in Li N (100kg) goal: reach the extremely low background of 1 ev/100 kg y keV below 100 keV test a large part of MSSM parameter space for neutralinos

6 GENIUS: detection technique ionization in p-type HPGe detectors no recoil discrimination single/multiple events give some background reduction Main background reduction: by operating naked Ge crystals directly in liquid nitrogen

7 Naked Ge detectors feel well in liquid nitrogen contacts established using only 3 g of material (stainless steel to fix inner and outer contacts) here: test detector (425 g) held on kevlar wires

8 Performance in LiN no electrical interference no microphonics up to 6m cables between crystals and FETs resolution: 1 keV @ 300 keV threshold: 2.5 keV 133 Ba background

9 Possible location: Gran Sasso

10 Possible layout study in collab. with Messer-Griesheim, Germany

11 Design of the holder system 1,2 or more concentric layers of Ge crystals holder made of high molecular PE

12 Background expectations Monte Carlo simulations based on GEANT3.21 + GCALOR Geometry: 12 x 12 m tank, 2 m PE foam, 2 mm steel walls, holder system of HD1000, 40 Ge detectors, muon veto on top of the tank External background: photon and neutron flux from rock muon interactions + induced activities Internal background: intrins. contam. of LiN, steel vessel, holder system, Ge-crystals activation of Ge and LiN at sea level

13 External background simulation of measured  and n-flux in GS ComponentEvents/100 kg y keV (<100 keV) gammas0.4 neutrons0.04 muon showers0.2 muon -> n0.1 muon capture<< 0.01 goal1 12 m tank 2m borated PE foam muon veto: 96 % eff.

14 Internal background SourceRadionuclidePurityCount rate/ 100 kg yr keV Liquid nitrogen 238 U 232 Th 40 K 222 Rn 3.5 x 10 -16 g/g 4.4 x 10 -16 g/g 1.0 x 10 -15 g/g 3  Bq/m 3 0.07 0.04 0.01 0.03 Holder system 238 U/ 232 Th 1.0 x 10 -12 g/g0.0015 Steel vessel 238 U/ 232 Th 5.0 x 10 -9 g/g0.08 GOAL1

15 Cosmogenics in Germanium assumptions: 10 days @ sea level 68 Ge: saturration 3 yr below ground activity 3 H, 49 V, 54 Mn, 55 Fe, 57 Co, 60 Co, 65 Zn, 68 Ge 3H3H   Q = 18.6 keVT 1/2 = 12.35 yr 68 GeECE(K a ) = 10.37 keV Q EC ( 68 Ga) = 2921 keV T 1/2 = 270 d

16 3 H, 68 Ge assumptions: 10 days @ sea level 68 Ge: saturration 3 yr below ground activity 3H3H   3.6  Bq/kg ~113 decays/yr 200 ev/100 kg yr keV (12-19 keV) 68 GeEC 28  Bq/kg 1.1 ev/100 kg yr keV solutions? 3 H: shielded production 1m heavy concrete ~ 5 mwe: factor 30 1 d transportation: factor 10 better: produce detectors in undeground lab! 68 Ge: decays after another 2 yr, subtract 10.37 keV line start early with detector production, store underground

17 Cosmogenics in LiN IsotopeT 1/2 Energy [keV] Activity [Bq/g] Rate/ 100kg yr keV 3H3H12.3 y 18.6 (  - ) 3.8 x 10 -8 negligible 7 Be53.3 d 477.6 (  ) 3.7 x 10 -9 0.8 10 Be1.6 x 10 6 y 555 (  - ) 8 x 10 -15 negligible 14 C5.7 x 10 4 y 156 (  - ) 1.4 x 10 -4 0.01 Goal1 10 d transportation @ sea level

18 Other background sources radionuclide production in Ge/LiN by  induced sec. n: 14 N(n,x) a B, 70,72,73,74,76 Ge(n,x) a B negativ muon capture in LiN -> rates and decays of produced isotopes:  - + (7,14) -> (6, 14) * +  (6,14) * -> (Z ‘,A ‘ ) + (1-4)n, ,p inelastic muon scattering:  + N ->  ‘ + X * contributions are not relevant

19 Expectations for GENIUS GENIUS CDMS Soudan CRESST HDMS CDMS 2000 DAMA 3  V. Mandic, R. Gaitskell with 100 kg Ge: detect WIMP signature via annual modulation

20 current status? GENIUS Test Facility is approved and being installed @ GS

21 Genius Test Facility borated PE 14 natural (40 kg) HPGe in a volume of 0.064 m 3 of ultra-pure LiN 0.5 mm steel vessel 0.9 x 0.9 x 0.9 m polystyrene 5 cm inner shield of HPGe 10 cm low level Cu 30 cm of Pb 15 cm borated PE L. Baudis et al., hep-ex/0012022 2 m x 2m

22 Genius-TF goals background: 2 events/ kg y keV: 0 - 50 keV: factor of 10 better than Heidelberg-Moscow test material purities down to this level design of crystal support system new DAQ and electronics reliability of calculation of cosmogenic production long-term stability of naked HPGe in LiN

23 Background estimations MC simulations: photon, neutron, muon flux in GS intrinsic radioactivity of: liquid nitrogen steel vessel polystyrene foam Ge, Cu shields crystal holder system Ge crystals + cosmogenic activation of Ge and Cu

24 Assumptions for material purities Ge crystalsupper limit HM LiN1000 x Borexino Rn in LiN 325  Bq/m 3 (Heusser 2000) SteelHd (Heusser 2000) Ge bricks100 x limit HM Polystyrenefirst measurements in HD CopperHM (cosmo + anthro) Holder systemSNO meas. for acryl

25 Cosmogenics in Ge 30 days production + transportation @ sea level 1 year de-activation below ground

26 Sumspectrum

27 Genius-TF: expectation based on: 2 events/kg y keV 1 yr exposure 2 keV/11 keV threshold

28 Genius-TF & WIMP signature E th = 2 keV (11 keV) B = 4 events/kg y keV M = 40 kg (nat) Ge 0.4 - 1.4 yr (1.3 - 5 yr) exposure required to see the DAMA signal with 50% - 90% probability and 99.5 % CL (S. Cebrian et al., Astrop. Phys. 14 (2001), hep-ph/9912394) but: new detectors -> E th = 0.5 keV! will significantly improve the sensitivity to the annual modulation signature good chance to see an annual modulation

29 Status of Genius-TF Infrastructure built at Gran Sasso 5 detectors are ready (crystals + signal/HV contacts) Cold hardware is being built in Heidelberg New electronics: MPIK, Heidelberg Setup to be installed in GS during the next months First results expected by end of 2002

30 Conclusions for GENIUS technology: simple, well understood production of 40 HPGe detectors: straightforward LiN purification method proved by BOREXINO 1 event/100 kg yr keV can be reached if: tank diameter: 12 m production of cosmogenics in Ge minimized surface contaminations under control cover large part of M W -  parameter space detect a WIMP signature

31 backup slides

32 Muon induced neutrons

33 Negative muon capture


Download ppt "The GENIUS dark matter project Laura Baudis Stanford University."

Similar presentations


Ads by Google