Download presentation
Presentation is loading. Please wait.
Published byMarlene Skinner Modified over 9 years ago
1
FRACTIONS LESSON 4
2
TERMIOLOGY ► NUMERATOR – Top digit of a fraction ► DENOMINATOR – Bottom digit of a fraction ► EQUIVALENT FRACTIONS - are fractions that have the same value ► MIXED FRACTION - is a whole number plus a fraction ► IMPROPER FRACTIONS - have the numerator part greater or equal to the denominator part
3
EQUIVALENT FRACTIONS ► We can determine if fractions are equivalent by multiplying the numerator and denominator by the same number ► EXAMPLE: 2424 = 1212 x2
4
TRY THESE ► ► 1) ► ► 2) ► ► 3) 3535 6767 4848 = = =
5
TRY THESE ► ► 1) ► ► 2) ► ► 3) 3535 6767 4848 = = = 6 10 x2
6
TRY THESE ► ► 1) ► ► 2) ► ► 3) 3535 6767 4848 = = = 6 10 12 14 x2
7
TRY THESE ► ► 1) ► ► 2) ► ► 3) 3535 6767 4848 = = = 6 10 12 14 8 16 x2
8
MIXED FRACTIONS ► EXAMPLE: ► TO CALCULATE THE NUMERATOR when converting mixed to improper fractions: ► TO CALCULATE THE NUMERATOR when converting mixed to improper fractions: ► 1) Multiply the whole number of the mixed fraction by the denominator ► 2) Add on the numerator of the fraction part 3535 3
9
CHANGING MIXED TO IMPROPER ► EXAMPLE: 3 3535 STEP 1 Multiply 3 x 5 = 15 x
10
CHANGING MIXED TO IMPROPER ► EXAMPLE: 3 3535 STEP 1 Multiply 3 x 5 = 15 STEP 2 Add the result from step 1 to the numerator 15 + 3 = 18
11
CHANGING MIXED TO IMPROPER ► EXAMPLE: 3 3535 STEP 1 Multiply 3 x 5 = 15 STEP 2 Add the result from step 1 to the numerator 15 + 3 = 18 STEP 3 Place result from step 2 in the numerator 18 ?
12
CHANGING MIXED TO IMPROPER ► EXAMPLE: 3 3535 STEP 1 Multiply 3 x 5 = 15 STEP 2 Add the result from step 1 to the numerator 15 + 3 = 18 STEP 3 Place result from step 2 in the numerator STEP 4 Keep the same denominator 18 ? 18 5
13
IMPROPER FRACTIONS ► EXAMPLE: ► TO CHANGE THE IMPROPER fraction to a mixed fraction DIVIDE the numerator by the denominator ► TO CHANGE THE IMPROPER fraction to a mixed fraction DIVIDE the numerator by the denominator ► The quotient (i.e. the result of division) is the whole number part of the mixed fraction ► The remainder is the numerator of the fraction part of the mixed fraction 14 6
14
CHANGING IMPROPER TO MIXED ► EXAMPLE: 14 6 STEP 1 Divide 14 ÷ 6 = 2 and remainder of 2
15
CHANGING IMPROPER TO MIXED ► EXAMPLE: 14 6 STEP 1 Divide 14 ÷ 6 = 2 and remainder of 2 STEP 2 Remainder is the numerator 2?2? 2
16
CHANGING IMPROPER TO MIXED ► EXAMPLE: 14 6 STEP 1 Divide 14 ÷ 6 = 2 and remainder of 2 STEP 2 Remainder is the numerator STEP 3 Keep the same denominator 2?2? 2 2 2626
17
CHANGING IMPROPER TO MIXED ► EXAMPLE: 14 6 STEP 1 Divide 14 ÷ 6 = 2 and remainder of 2 STEP 2 Remainder is the numerator STEP 3 Keep the same denominator STEP 4 Reduce to lowest terms 2?2? 2 2 2626 1313 22 2626 =
18
TRY THESE ► CHANGE A MIXED FRACTION TO AN IMPROPER: ► 1) ► 2) 3 2424 5 3737
19
TRY THESE ► CHANGE A MIXED FRACTION TO AN IMPROPER: ► 1) ► 2) 3 2424 5 3737 = 14 4
20
TRY THESE ► CHANGE A MIXED FRACTION TO AN IMPROPER: ► 1) ► 2) 3 2424 5 3737 = 14 4 = 7272
21
TRY THESE ► CHANGE A MIXED FRACTION TO AN IMPROPER: ► 1) ► 2) 3 2424 5 3737 = 14 4 = 7272 = 38 7
22
TRY THESE ► CHANGE AN IMPROPER TO A MIXED FRACTION: ► 1) ► 2) 22 5 17 6
23
TRY THESE ► CHANGE AN IMPROPER TO A MIXED FRACTION: ► 1) ► 2) 22 5 17 6 = 2525 4
24
TRY THESE ► CHANGE AN IMPROPER TO A MIXED FRACTION: ► 1) ► 2) 22 5 17 6 = 2525 4 = 2 5656
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.