Presentation is loading. Please wait.

Presentation is loading. Please wait.

Green Methanol from the Hydrogenation of Carbon Dioxide

Similar presentations


Presentation on theme: "Green Methanol from the Hydrogenation of Carbon Dioxide"— Presentation transcript:

1 Green Methanol from the Hydrogenation of Carbon Dioxide
Claudio J. A. Mota1,2 1Federal University of Rio de Janeiro – Institute and School of Chemistry, Brazil 2INCT Energy & Environment, UFRJ, Brazil

2 Chemistry and Fuels Wood Coal Petroleum Until 1700 1700-1900
today

3 CO2 Concentration in the Atmosphere
CO2 Net Emissions in 2011: 16.1 Billions Mton [CO2 atmosphere concentration]: 400 ppm (2013) ~ 40% increase 278 ppm (1785) – Industrial Revolution starts 1 Pg = 1 Petagram = 1x1015g = 1 Billion metric tons = 1 Gigaton 1 Kg Carbon (C) = 3.67 Kg Carbon Dioxide (CO2) Source: Global Carbon Project 2014

4 CO2 Concentration in the Atmosphere

5 Glycerol C&EN 2009, vol 87, number 22, pages16-17

6 Glycerol C. X. da Silva, V. L. C. Gonçalves, C. J. A Mota Green Chem. 2009, 11, 38-41 Mota, C. J. A., Silva, C. X. A.; Rosenbach, N.; Costa, J. Silva, F.. Energy Fuels 2010, 24, 2733

7 Flow Properties ASTM – D 97
Glycerol Flow Properties ASTM – D 97 SAMPLE Cloud (°C) Freezing (°C) Pour (°C) B 100 (PALM) 18 15 B % ETHERS 12 B % ETHERS 14 11 B % ETHERS

8 Biodiesel B A. L. Lima, A. Mbengue, M. Guarnier, R. A. Sangil, C. M. Ronconi, Claudio J. A. Mota. Catal. Today 2014, 226,

9 Biodiesel RCO2H RCO2CH3 Triglyceride 3 RCO2CH3

10 Concept of CO2 Utilization

11 “Anthropogenic Chemical Carbon Cycle" , George A
“Anthropogenic Chemical Carbon Cycle" , George A. Olah et al, JACS 2011,133,12881

12 Industrial Initiatives of CO2 Hydrogenation to Methanol
Mitsui Chemicals | Osaka, Japan Carbon Recycling International | Iceland Pilot Plant tonnes MeOH/yr Cu/ZnO promoted catalyst Packed bed (25 kg catalyst) CO2 as feedstock H2 from Water Photolysis Catalyst life: 4,500 h Commercial Plant since 2011 5 MM Liters/yr of methanol CO2 Reclaim: 4.5 MM Tonn/yr H2 from water electrolysis using geothermal energy Source: Carbon Recycling International Source: Mitsui Chemicals – Information Brochure

13 World Methanol Industry  US$ 36 billions/year with 100 thousand jobs
Importance of Methanol Production of biodiesel Production of formaldehyde Production of acetic acid Production of dimethyl ether (DME) Production of resins and plastics MTH  olefins and hydrocarbons (fuels) World production around 50 millions tonnes per year Fonte: Methanol Institute World Methanol Industry  US$ 36 billions/year with 100 thousand jobs Fonte: Methanol Institute

14 Thermodynamics Considerations
Methanol formation: CO + 2H CH3-OH ΔHO50Bar,298K = kJ/mol CO2 + 3H CH3-OH + H2O ΔHO50Bar,298K = kJ/mol Reverse WGS as a side reaction: CO2 + 3H CO + H2O ΔHO50Bar,298K = kJ/mol  Methanol synthesis is exothermic  Reduction of molecularity (3:1 for CO/H2; 4:2 for CO2/H2)  Thermodynamics: Low temperature and high pressure favor the methanol synthesis

15 Green Methanol Plant in Brazil  Bioethanol Economy
C6H12O yeast C2H5OH + 2 CO2

16 Initial studies Cu/Zn/Al 50/40/10 molar ratio Weight: 500 mg
Catalyst Activation: 3-steps reduction: 10%H2/N2 140oC for 5 h; Raised to 270oC in 2 h 270oC for 2 h Reaction Conditions: Temperature: 230, 250, 270oC Pressure: 15, 30, 50 bar WHSV: 10 h-1 CO2/H2: 1/3 molar ratio TOS: 20 h

17 Initial Studies Cu/Zn/Al (50/40/10 mol%) WHSV = 10 h-1 ; TOS = 20 h ; H2:CO2 = 3:1 270 oC

18 Cu/Zn/Al (50/40/10 mol%) WHSV = 10 h-1 ; TOS = 20 h ; H2:CO2 = 3:1
Challenge for Catalyst Optimization 50 bar 30 bar 15 bar R. S. Monteiro and C. J. A. Mota Quím. Nova 2013, 36,

19 Standard Catalyst Preparation  Effect of Promotors
1. Metal salts water solution Cu, Zn, Al, Ce, Mg and Zr Nitrates 2. One-single pot solution pH ~ 3; heating 1000 rpm 3. Co-precipitation (pH = 6-7) 1M NaOH; dropwise T = oC; aged 60 min 4. Filtration/Washing 5. Drying T = 160oC; 10oC/min 18 hrs. 6. Calcination T = 600oC; 10oC/min 2h 7. Crushing and Sieving pH = 3 pH = 5 pH = 7-8 Cu/Zn/Promotors (50/40/10 mol%)

20 CO2 Hydrogenation over Standard-Prepared Catalysts
Equilibrium Yield (250oC, 50 bar) CuZn based catalysts – Promotion Effect

21 CO2 Hydrogenation over Standard-Prepared Catalysts
CO2 + 3H CH3-OH + H2O ΔHO50Bar,298K = kJ/mol CO2 + H CO + H2O ΔHO50Bar,298K = kJ/mol CuZn based catalysts

22 Activity/Structure Correlation  BET Area
CuZn based catalysts ZrAlGaSi ZrAl CeAl MgAl Zr CeZr MgZr

23 Activity/Structure Correlation  TPR Profile CuZn based catalysts
CuO Al CeAl ZrAl ZrAlGaSi 300oC 416oC Temperature (oC) Catalyst activation: 270oC CuO  Cuo (> 300oC) CuO surface reduction under reaction conditons. Better MeOH yield on catalysts with lower temperature of reduction Promoters allow CuO reduction at lower temperatures

24 Activity/Structure Correlation  DRX
CuZn based catalysts ZnO (100) (002) CuO (111) (101) Al MgAl CeAl SnAl ZrAl ZrAlGaSi 2 Theta (O) Amorphous phase or tiny particles??

25 Improved Catalyst Preparation
1. Metal salts water solution Cu, Zn, Al, Ce and Zr Nitrates 2. One-single pot solution pH ~ 3; heating 1000 rpm 3. Co-precipitation (pH = 6-7) 1M Na2CO3; dropwise T = oC; aged 60 min 4. Filtration/Washing 5. Drying T = 160oC; 10oC/min 18 hrs. 6. Calcination T = 600oC; 10oC/min (STD) T = 380 oC; 10oC/min (IMP) 7. Crushing and Sieving Reaction Conditions: 250oC; 50 bar; 10 h-1 MeOH Yields – Cu/Zn/Zr/Al: IMP: > 700 gMeOH/Kgcat.h STD: > 500 gMeOH/Kgcat.h Cu/Zn/Zr/Al IMP STD

26 Improved Catalyst Preparation
Methanol Selectivity Methanol Yield Cu/Zn/Zr/Al Cu/Zn/Zr/Al

27 Improved Catalyst Preparation
CO Selectivity Catalyst BET Area (m2/g) CuZnZrAl_IMP 78 CuZnZrAlGaSi 54 CuZnAl_STD 31 Cu/Zn/Zr/Al

28 Summary of the Results T = 2500C, P = 50 bar, 10 h-1, TOS 8 h
Composition Methanol Yield (gMeOH.kgcat-1.h-1) % Equilibrium Yield Mitsui Reference* 721 100 Cu/Zn/Zr/Al_IMP 720 Cu/Zn/Zr/Al_STD 510 70 Cu/Zn/Ce/Al_STD 480 67 Cu/Zn/Mg/Al_STD 370 51 Cu/Zn/Ce/Zr_STD 350 48 Cu/Zn/Zr_STD 320 44 Cu/Zn/Mg/Zr_STD 280 39 Cu/Zn/Al_STD 180 25 * K. Ushikoshi, K. Mori. T. Kubota. T. Watanabe and M. Saito, Appl. Organometal. Chem 2000, 14, 819

29 People

30 Financing

31 Give Nature a Chance

32 Forthcoming events in Rio
2016  International Zeolite Conference (IZC) 2017  Acid Base Catalysis (ABC) 2017  IUPAC Congress (São Paulo) 2018  ICCDU - XVI

33

34 Thermodynamic limitations
W.-J. Sien, K.-W. Ju, H.-S. Choi, K.-W. Lee, Korean J Chem Eng 2000,17, ()

35 CO2* → HCOO* → HCOOH* → CH3O2* → CH2O* → CH3O* → CH3OH*
Mechanistic Studies Lowest-energy pathway: CO2* → HCOO* → HCOOH* → CH3O2* → CH2O* → CH3O* → CH3OH* L. C. Grabow and M. Mavrikakis, ACS Catalysis 1 (2011) 365


Download ppt "Green Methanol from the Hydrogenation of Carbon Dioxide"

Similar presentations


Ads by Google