Presentation is loading. Please wait.

Presentation is loading. Please wait.

Model Predictive Impedance Control MPIC

Similar presentations


Presentation on theme: "Model Predictive Impedance Control MPIC"— Presentation transcript:

1 Model Predictive Impedance Control MPIC

2

3 Motor Control Features
Feedback (closed loop) Feedforward (open loop) Learning Predictive Control Joint (muscle) impedance Interaction with environment Hierarchical EPH, Rhythmic & Tracking movements, …

4 Limbic System Highest Level Need Associative Cortex Plan Middle Level Cerebellum Motor Cortex Basal Ganglia Motor Program Spinal Cord Lowest Level Musculo-Skeletal System Movement

5

6 Stiffness Control Scheme
Disturbance T d Delay Receptors Brain Model b Torque Joint Movement Spinal qd Circuits Feedforward Joint-Load Controller and Dynamics Trajectory q Muscles Selector s

7 Stiffness Control Scheme
Disturbance T d Delay Receptors Brain Model b Torque Joint Movement Spinal qd Circuits Feedforward Joint-Load Controller and Dynamics Trajectory q Muscles Selector s

8 Model Predictive Impedance Control
Trajectory Brain Model Selector . q Identifier d q d System- Disturbance M P C and Feedforward Controller Adaptation Models Algorithm . b + + b - - Delay s b Delay Model Predictive Impedance Control + + G1 Receptors EMG Receptors G2 Torque T d + + G3 Joint-Load . q q

9 Example 1: Rhythmic Movement

10

11 Rhythmic Movement Errors

12 Model Response for Rhythmic Movement
Time (s)

13 External Disturbances
Time (s)

14 Model Mismatch Responses for Rhtymic Movement
Time (s)

15 Example 2: Tracking Movement

16 Tracking Movement Errors

17 Tracking Movement

18 Errors of Parameter Mismatch
( Rhythmic Movement ) Parameter(s) % % 30% % J B K T g J-B-K Error is root mean square errors (rad).

19 Errors of Parameter Mismatch
( Tracking Movement ) Parameter(s) % % 30% % J B K T g td J-B-K Error is root mean square errors (rad).

20 Example 3: Gait

21

22 G3 is determined by linearization of the equations for small angle deviations

23 M P C x0 1 2 . Identification Control Pendulum Dynamics Desired
Trajectory Identification Control M P C 1 2 Step Function Dynamic Impedance PD Controller) bS + s _____________ (T1S+1)(T2S+1) 1 X =AX+BU Y =CX+DU . x0 Pendulum Dynamics Angle of Ankle Joint

24 Changes of Impulse Response & Control Signal in Double Pendulum Model
Time (s)

25


Download ppt "Model Predictive Impedance Control MPIC"

Similar presentations


Ads by Google