Presentation is loading. Please wait.

Presentation is loading. Please wait.

20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 1 GMES-GATO: Atmospheric correction using atmospheric composition satellite data J.J. Remedios EOS-SRC,

Similar presentations


Presentation on theme: "20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 1 GMES-GATO: Atmospheric correction using atmospheric composition satellite data J.J. Remedios EOS-SRC,"— Presentation transcript:

1 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 1 GMES-GATO: Atmospheric correction using atmospheric composition satellite data J.J. Remedios EOS-SRC, Dept. of Physics and Astronomy, University of Leicester, U.K. http://www.leos.le.ac.uk/home

2 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 2 Structure Influence of the atmosphere on surface observations –Atmospheric correction –Issues requiring surface and atmosphere information Requirements for atmospheric correction What are the technical issues? Current developments? Rational system needs (existing data/systems) What is missing (future systems)? GMES objectives

3 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 3 Atmospheric influence on Systems Observing the Earth’ s Surface I 1.Satellite observations of the surface must intrinsically account for the atmosphere (atmospheric correction) Atmospheric effects are present at almost all wavelengths Example of 1. is correction of phytoplankton (ocean colour) data for ozone contribution. 2.Atmospheric composition may also affect surface properties and also the reverse –Direct e.g., chemical action, deposition, emitted flux of gases. –Indirect, e.g., control of surface temperature or photosynthetic radiation. User requirements include combined surface and atmosphere datasets, e.g., forestation and carbon dioxide, vegetation and water vapour, U/V radiation. Example of 2. is dependence of phytoplankton concentrations on U/V radiation (and hence ozone) Concentrate on 1 here: atmospheric correction

4 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 4 SOURCES OF RADIATION AT THE TOP OF THE ATMOSPHERE; RADIATION BALANCE

5 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 5 ATMOSPHERIC GASES AND THE SOLAR SPECTRUM

6 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 6 Infra-red emission spectrum to space [Nadir signal for an i/r instrument 10  m 4  m20  m 5  m Wavenumber = 1/  but in cm -1. Ref. pt. 10  m = 1000 cm -1 12  m window 8  m window CO 2 O3O3 N 2 O, CH 4 H2OH2O

7 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 7 I/R EMISSION SPECTRA Sahara Mediterranean Antarctic

8 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 8 Atmosphere influence on surface systems II Policy issues in this area arise from two sources: Requirements for atmospheric correction to surface data Requirements for atmosphere data relevant to interpretation of surface measurements. [cross-cutting BICEPS level] Concentrate on 1 here. User requirements for surface data can be grouped into three areas, for which a number of key issues can be identified. Environmental hazards [GMES] Environmental monitoring [GMES] Commercial remote sensing

9 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 9 Volcanic Activity

10 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 10 MODIS/AQUA – FIRES/AEROSOL MAY 9 2003 RUSSIA FIRES 2003 MOPITT CO. MAY 3-8 2003

11 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 11 VEGETATION ATSR-2 IMAGE: VEGETATION DIFFERENCES AT THE BORDERS OF ISRAEL ATSR-2 IMAGE: DERIVED VEGETATION COVER (06/09/95)

12 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 12 Atmospheric correction? 1.Most common atmospheric factors are a)Clouds (troposphere – optically thick, thin, broken) b)Tropospheric Aerosols (lower 2-3 km) c)Tropospheric water vapour (lower 2-3 km) d)Tropospheric CO 2, CH 4 (near-surface) e)Molecular density (ground to approximately tropopause) f)Stratospheric ozone (above 15/20 km) g)Stratospheric aerosols (volcanic eruption) h)O 4 complex 2.Would also include ionosphere for radio/microwave

13 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 13 1x1 Block: Dual SST Matchups 30 June 2003 Overpass ± 60 min Key - matchups:  - within ± 0.3 K X- > ± 0.3 K  - AATSR cloud Increasing time PUERTO RICO Colour indicates dual-view SST

14 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 14 ATSR2 SST (dual-nadir) vs TOMS Aerosol DUAL-NADIR ATSR-2 SST TOMS AEROSOL

15 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 15 ATSR SST-AEROSOL: 07/1999 ATSR-2 VS AVHRR TOMS AEROSOL INDEX

16 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 16 Dust Storm over Red Sea (MODIS) August 14 th 2003 http://naturalhazards.nasa.g ov/

17 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 17 Box14 Red Sea Mean SST difference versus Time TOMS Aerosol Index versus Time Correlation=0.79

18 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 18 Scatter Plot of Mean SST Difference versus Aerosol Index Over the Red Sea Pixel by Pixel Correlation=0.544

19 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 19 Schroedter, M., 1997 Diplomarbeit and M. Schrodter, F. Olesen, H. Fischer, 2003 IJRS TOVS versus ECMWF profiles Difference between LST: TOVS - ECMWF Atmospheric correction AVHRR 16.09.1992 afternoon Bias TOVS vs. ECMWF 0.23 K Stdv. TOVS – ECMWF 0.27 K Black: clouds, water, snow AVHRR 17.09.1992 afternoon Bias TOVS vs. ECMWF 0.82 K Stdv. TOVS – ECMWF 0.82 K

20 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 20 Table of Requirements Parameterλ regionTypical λTypical spatial resn. Atmospheric correction requirements Sea/land surface temperature Infra-red11 μm, 12 μm 3.7 μm (night) 1 x 1 km 2 Aerosol, water vapour (T) Surface reflectance/imager y visible470 nm -2.2 μm (discrete channels or low spectral resn.) 30 x 30 m 2 to 5 x 5 m 2 Aerosol, water vapour, ozone, O 4 Vegetation indices (derived from reflectance) visible600 nm – 1 μm1 x 1 km 2 Aerosol, water vapour, ozone Ocean colourvisible400-550 nm1 x 1 km 2 Aerosol, water vapour, ozone, O 4 Sea/land surface height (SH) [single channel] microwav e 13.575, 5.3, 3.2 GHz <2 x 2 km 2 Water vapour 0 cm (poles)- 40 cm (tropics) Ocean salinitymicrowav e 1.4 GHz35-50 x 35-50 km 2 Water vapour

21 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 21 Current and future developments Current:  Hyperspectral  Multi-angle  Dedicated channels for atmospheric correction Future:  Future instruments: potential for joint surface/atmosphere measurements (e.g., aerosols from imagers, H 2 O from SAR)  Role of assimilation models, e.g., ECMWF, KNMI Ozone

22 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 22 What are the technical issues? 1.The latest sensors often incorporate a spectral channel for determining atmospheric correction factors. a)Are all the relevant atmospheric factors measured b)Is vertical resolution required? c)Is the information measured at the correct wavelengths – particularly aerosols? 2.Surface products and imagers often require a high spatial resolution ( < 5 x 5 km 2 ) with specific temporal resolution. What is the ability of atmospheric GMES systems to deliver this information? Spectral vs Spatial resolution 3.Will atmospheric instruments measure the “correct” (relevant) types of aerosol? 4.What is the accuracy of assimilation and the potential for improved spatial scales?

23 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 23 Rational System Needs (European) 1.Communication between surface sensing and atmospheric sensing communities (network) 2.Research into the exploitation of independent atmospheric sensing information within surface sensors. 3.Establish accuracies of ECMWF/ other assimilation systems for ozone/water vapour 4.Research into radiative transfer systems and models of the atmosphere 5.Inter-instrument research on aerosol across the e/m spectrum. 6.Operational data processing for multi-system data, e.g. ENVISAT/Metop 7.Continuity in the observation of key atmospheric variables and intercalibrated datasets relevant to surface products

24 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 24 What is missing (in European systems)? 1.Research into the derivation of atmospheric correction information at high spatial scales. 2.Development of synergistic mission system concepts – formation flying 3.Development of assimilation systems providing atmospheric information to surface sensing communities 4.High spatial resolution aerosol mission to establish aerosol climatology/radiative properties [air quality] 5.[“Quick reaction” system for volcanic eruption into stratosphere]

25 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 25 Overall surface-atmosphere system An integration of surface and atmosphere systems: Observation systems  Use of atmospheric sensors in other GMES (sub-) system.  Exploitation of atmospheric information derived from other GMES systems (two-way)  High spatial resolution aerosol mission  Continuity of measurements for water vapour, ozone. Accessible and linked databases /processing centres [*] NRT capabilities including data assimilation [*]

26 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 26 Volcanic Activity (c) Dr. A. Richter, IFE/IUP Bremen Andreas Richter and John Burrows – IUP Bremen

27 20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 27 Mt Etna


Download ppt "20/1/2004Dr. J.J. Remedios, Leicester. ACAW, 21/1/2004 1 GMES-GATO: Atmospheric correction using atmospheric composition satellite data J.J. Remedios EOS-SRC,"

Similar presentations


Ads by Google