Download presentation
Presentation is loading. Please wait.
Published byGerald Fisher Modified over 9 years ago
1
ECE 332 Digital Electronics and Logic Design Lab Lab 6 Concurrent Statements & Adders
2
concurrent signal assignment ( ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements Dataflow VHDL
3
target_signal <= value1 when condition1 else value2 when condition2 else... valueN-1 when conditionN-1 else valueN; When - Else.… Value N Value N-1 Condition N-1 Condition 2 Condition 1 Value 2 Value 1 Target Signal … 0101 0101 0101 Conditional concurrent signal assignment
4
Relational operators Logic and relational operators precedence = /= >= not = /= >= and or nand nor xor xnor Highest Lowest Operators
5
compare a = bc Incorrect … when a = b and c else … equivalent to … when (a = b) and c else … Correct … when a = (b and c) else … Priority of Logic and Relational Operators
6
Tri-state Buffer – example LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY tri_state IS PORT ( ena: IN STD_LOGIC; input: IN STD_LOGIC_VECTOR(7 downto 0); output: OUT STD_LOGIC_VECTOR (7 DOWNTO 0) ); END tri_state; ARCHITECTURE tri_state_dataflow OF tri_state IS BEGIN output <= input WHEN (ena = '0') ELSE (OTHERS => 'Z'); END tri_state_dataflow; input output ena OTHERS means all bits not directly specified, in this case all the bits.
7
concurrent signal assignment ( ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements Dataflow VHDL
8
with choice_expression select target_signal <= expression1 when choices_1, expression2 when choices_2,... expressionN when choices_N; With –Select-When choices_1 choices_2 choices_N expression1 target_signal choice expression expression2 expressionN Selected concurrent signal assignment
9
Allowed formats of choices_k WHEN value WHEN value_1 to value_2 WHEN value_1 | value_2 |.... | value N this means boolean “or”
10
Allowed formats of choice_k - example WITH sel SELECT y <= a WHEN "000", b WHEN "011" to "110", c WHEN "001" | "111", d WHEN OTHERS;
11
MLU: Block Diagram
12
MLU: Entity Declaration LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY mlu IS PORT( NEG_A : IN STD_LOGIC; NEG_B : IN STD_LOGIC; NEG_Y : IN STD_LOGIC; A : IN STD_LOGIC; B : IN STD_LOGIC; L1 : IN STD_LOGIC; L0 : IN STD_LOGIC; Y : OUT STD_LOGIC ); END mlu;
13
MLU: Architecture Declarative Section ARCHITECTURE mlu_dataflow OF mlu IS SIGNAL A1 : STD_LOGIC; SIGNAL B1 : STD_LOGIC; SIGNAL Y1 : STD_LOGIC; SIGNAL MUX_0 : STD_LOGIC; SIGNAL MUX_1 : STD_LOGIC; SIGNAL MUX_2 : STD_LOGIC; SIGNAL MUX_3 : STD_LOGIC; SIGNAL L: STD_LOGIC_VECTOR(1 DOWNTO 0);
14
MLU - Architecture Body BEGIN A1<= NOT A WHEN (NEG_A='1') ELSE A; B1<= NOT B WHEN (NEG_B='1') ELSE B; Y <= NOT Y1 WHEN (NEG_Y='1') ELSE Y1; MUX_0 <= A1 AND B1; MUX_1 <= A1 OR B1; MUX_2 <= A1 XOR B1; MUX_3 <= A1 XNOR B1; L <= L1 & L0; with (L) select Y1 <= MUX_0 WHEN "00", MUX_1 WHEN "01", MUX_2 WHEN "10", MUX_3 WHEN OTHERS; END mlu_dataflow;
15
Data-flow VHDL concurrent signal assignment ( ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements
16
For Generate Statement For - Generate label: FOR identifier IN range GENERATE BEGIN {Concurrent Statements} END GENERATE [label];
17
PARITY Example
18
PARITY: Block Diagram
19
PARITY: Entity Declaration LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY parity IS PORT( parity_in : IN STD_LOGIC_VECTOR(7 DOWNTO 0); parity_out : OUT STD_LOGIC ); END parity;
20
PARITY: Block Diagram xor_out(1) xor_out(2) xor_out(3) xor_out(4) xor_out(5) xor_out(6)
21
PARITY: Architecture ARCHITECTURE parity_dataflow OF parity IS SIGNAL xor_out: std_logic_vector (6 downto 1); BEGIN xor_out(1) <= parity_in(0) XOR parity_in(1); xor_out(2) <= xor_out(1) XOR parity_in(2); xor_out(3) <= xor_out(2) XOR parity_in(3); xor_out(4) <= xor_out(3) XOR parity_in(4); xor_out(5) <= xor_out(4) XOR parity_in(5); xor_out(6) <= xor_out(5) XOR parity_in(6); parity_out <= xor_out(6) XOR parity_in(7); END parity_dataflow;
22
PARITY: Block Diagram (2) xor_out(1) xor_out(2) xor_out(3) xor_out(4) xor_out(5) xor_out(6) xor_out(7) xor_out(0)
23
PARITY: Architecture ARCHITECTURE parity_dataflow OF parity IS SIGNAL xor_out: STD_LOGIC_VECTOR (7 downto 0); BEGIN xor_out(0) <= parity_in(0); xor_out(1) <= xor_out(0) XOR parity_in(1); xor_out(2) <= xor_out(1) XOR parity_in(2); xor_out(3) <= xor_out(2) XOR parity_in(3); xor_out(4) <= xor_out(3) XOR parity_in(4); xor_out(5) <= xor_out(4) XOR parity_in(5); xor_out(6) <= xor_out(5) XOR parity_in(6); xor_out(7) <= xor_out(6) XOR parity_in(7); parity_out <= xor_out(7); END parity_dataflow;
24
PARITY: Architecture (2) ARCHITECTURE parity_dataflow OF parity IS SIGNAL xor_out: STD_LOGIC_VECTOR (7 DOWNTO 0); BEGIN xor_out(0) <= parity_in(0); G2: FOR i IN 1 TO 7 GENERATE xor_out(i) <= xor_out(i-1) XOR parity_in(i); END GENERATE; parity_out <= xor_out(7); END parity_dataflow;
25
Combinational Logic Synthesis for Beginners
26
concurrent signal assignment ( ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) For combinational logic, use only concurrent statements Simple Rules
27
For circuits composed of: – simple logic operations (logic gates) – simple arithmetic operations (addition, subtraction, multiplication) – shifts/rotations by a constant Use – concurrent signal assignment ( )
28
Simple Rules For circuits composed of – multiplexers – decoders, encoders – tri-state buffers Use: – conditional concurrent signal assignment (when-else ) – selected concurrent signal assignment (with-select- when)
29
<= <= when-else with-select <= Left side Right side Internal signals (defined in a given architecture) Ports of the mode - out - inout - buffer (don’t recommend using buffer in this class) Expressions including: Internal signals (defined in a given architecture) Ports of the mode - in - inout - buffer Left versus Right Side
30
For simple projects put entity.vhd files all in same directory Declare components in main code Xilinx will figure out hierarchy automatically Explicit Component Declaration Tips
31
METHOD #2: Package component declaration Components declared in package Actual instantiations and port maps always in main code
32
Packages Instead of declaring all components can declare all components in a PACKAGE, and INCLUDE the package once – This makes the top-level entity code cleaner – It also allows that complete package to be used by another designer A package can contain – Components – Functions, Procedures – Types, Constants
33
Package – example (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ; PACKAGE GatesPkg IS COMPONENT mux2to1 PORT (w0, w1, s : INSTD_LOGIC ; f : OUTSTD_LOGIC ) ; END COMPONENT ; COMPONENT priority PORT (w: IN STD_LOGIC_VECTOR(3 DOWNTO 0) ; y: OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ; z: OUT STD_LOGIC ) ; END COMPONENT ;
34
Package – example (2) COMPONENT dec2to4 PORT (w: IN STD_LOGIC_VECTOR(1 DOWNTO 0) ; En : IN STD_LOGIC ; y : OUT STD_LOGIC_VECTOR(0 TO 3) ) ; END COMPONENT ; COMPONENT regn GENERIC ( N : INTEGER := 8 ) ; PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ; Enable, Clock: IN STD_LOGIC ; Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0) ) ; END COMPONENT ;
35
constant ADDAB : std_logic_vector(3 downto 0) := "0000"; constant ADDAM : std_logic_vector(3 downto 0) := "0001"; constant SUBAB : std_logic_vector(3 downto 0) := "0010"; constant SUBAM : std_logic_vector(3 downto 0) := "0011"; constant NOTA : std_logic_vector(3 downto 0) := "0100"; constant NOTB : std_logic_vector(3 downto 0) := "0101"; constant NOTM : std_logic_vector(3 downto 0) := "0110"; constant ANDAB : std_logic_vector(3 downto 0) := "0111"; END GatesPkg; Package – example (3)
36
Package usage (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ; USE work.GatesPkg.all; ENTITY priority_resolver1 IS PORT (r: IN STD_LOGIC_VECTOR(5 DOWNTO 0) ; s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ; clk : IN STD_LOGIC; en : IN STD_LOGIC; t : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ; END priority_resolver1; ARCHITECTURE structural OF priority_resolver1 IS SIGNAL p : STD_LOGIC_VECTOR (3 DOWNTO 0) ; SIGNAL q : STD_LOGIC_VECTOR (1 DOWNTO 0) ; SIGNAL z : STD_LOGIC_VECTOR (3 DOWNTO 0) ; SIGNAL ena : STD_LOGIC ;
37
BEGIN u1: mux2to1 PORT MAP (w0 => r(0), w1 => r(1), s => s(0), f => p(0)); p(1) <= r(2); p(2) <= r(3); u2: mux2to1 PORT MAP (w0 => r(4), w1 => r(5), s => s(1), f => p(3)); u3: priority PORT MAP (w => p, y => q, z => ena); u4: dec2to4 PORT MAP (w => q, En => ena, y => z); u5: regn GENERIC MAP (N => 4) PORT MAP (D => z, Enable => En, Clock => Clk, Q => t ); END structural; Package usage (2)
38
Explicit Component Declaration versus Package Explicit component declaration is when you declare components in main code – When have only a few component declarations, this is fine – When have many component declarations, use packages for readability Packages also help with portability and sharing of libraries among many users in a company Remember, the actual instantiations always take place in main code – Only the declarations can be in main code or package
39
39 How to add binary numbers Consider adding two 1-bit binary numbers x and y – 0+0 = 0 – 0+1 = 1 – 1+0 = 1 – 1+1 = 10 Carry is x AND y Sum is x XOR y The circuit to compute this is called a half-adder xyCarrySum 0000 0101 1001 1110
40
40 xysc 1101 1010 0110 0000 = s (sum) c (carry)
41
41 x 11110000 y 11001100 c 10101010 s (sum) 10010110 c (carry) 11101000 A full adder is a circuit that accepts as input thee bits x, y, and c, and produces as output the binary sum cs of a, b, and c.
42
42 The full adder The full circuitry of the full adder
43
43 We can use a half-adder and full adders to compute the sum of two Boolean numbers 1 1 0 0 + 1 1 1 0 010? 001 Adding bigger binary numbers
44
44 Adding bigger binary numbers Just chain one half adder and full adders together, e.g., to add x=x 3 x 2 x 1 x 0 and y=y 3 y 2 y 1 y 0 we need:
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.