Presentation is loading. Please wait.

Presentation is loading. Please wait.

69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 1/13 JPL Progress Report Accurate line intensities for 16 O 12 C 17 O (627) in the 2.1 µm region (the.

Similar presentations


Presentation on theme: "69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 1/13 JPL Progress Report Accurate line intensities for 16 O 12 C 17 O (627) in the 2.1 µm region (the."— Presentation transcript:

1 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 1/13 JPL Progress Report Accurate line intensities for 16 O 12 C 17 O (627) in the 2.1 µm region (the OCO-2 strong band) David Jacquemart 1,2, Keeyoon Sung 3, Linda R. Brown 3, Arlan W. Mantz 4, Mary Ann H. Smith 5 1 UPMC Univ Paris 06, Laboratoire de Dynamique, Interactions et Réactivité, Paris, France. 2 CNRS, UMR 7075, Laboratoire de Dynamique, Interactions et Réactivité, Paris, France. 3 Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 4 Dept. of Physics, Astronomy and Geophysics, Connecticut College, New London, CT 5 Science Directorate, NASA Langley Research Center, Hampton, VA

2 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 2/13 JPL CO 2 minor isotopologues Intensity measurements and uncertainties  Status of measurement uncertainties (for strong bands)  How to improve OCO[627] line strength measurement uncertainty the limiting factor: Molecular abundance in the sample How to be sure of molecular abundances in our sample? Option#1 – Use manufacturer’s atomic abundances Option#2 – Perform independent sample characterization - WE DID. 1) Obtained a 17 O-enhanced CO 2 sample 2) Characterized the sample by mass spectrometry. SpeciesPosition (cm -1 )Intensity (%)Measurement availableABSCO list OCO[626] 0.0001 < 1 Benner et al. (unpublished) OCO[636] 0.0001~ 1 OCO[628]0.0012 – 3Toth et al.[2008] ~ 5Borkov et al.[2013] OCO[627] 0.001~ 5Lyulin et al. [2012] Borkov et al. [2013] Toth et al. (HITRAN) 10 – 15Karlovets et al.[2013]

3 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 3/13 JPL Mass spectrometry: Notations and terms  Atomic isotope ratio The letter, R, is reserved for atomic fractions R13 = [ 13 C]/[ 12 C]; R17 = [ 17 O]/[ 16 O]; R18 = [ 18 O]/[ 16 O]  Depletion factor δ (‰) = (R sample – R std )/R std × 1000 International Standards for C, PDB (Pee Dee Belemnite) For O, V-SMOW (Vienna Standard Mean Ocean Water) e.g.) δ 18 O = 0 for SMOW by definition e.g.) Earth’s tropospheric O 2 shows δ 18 O = + 23.5 ‰.  Construction of normal sample of CO 2 [CO 2 ]= ([ 12 C]+[ 13 C]) × ([ 16 O]+[ 17 O]+[ 18 O]) × ([ 16 O]+[ 17 O]+[ 18 O]) = [626]×(1+R13) × (1+R17+R18) 2  Two sets of mass spec measurement (to correct fractionation effect, measured a reference and a target sample) Reference CO 2 gas: δ 13 C = –10.44 PDB, δ 18 O = +31.22 V-SMOW Target sample bottle: 17 O-enhanced ( 17 O atom > 45%)

4 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 4/13 JPL Mass spectrum data analysis: A tomic abundance  (Stable) Isotope-Ratio Mass Spectrometer (IRMS) What are measured quantities?  M values: mole fraction of CO 2 isotopologues by mass/charge M-values factors Components M45/44 = ([636] + [627]) / [626] = R13 + 2×R17 M46/44 = ([628] + [637] + [727]) / [626] = 2×R18 + R17 2 + 2×R13×R17 M47/44 = ([728] + [638] + [737]) / [626] = 2×R17×R18 + R13×R17 2 + 2×R13×R18 M48/44 = ([828] + [738]) / [626] = R18 2 + 2×R13×R17×R18 M49/44 = [838] / [626] = R13×R18 2  Determine atomic abundance Find R to minimize χ 2 = ∑ i {( M i meas - M i cal )/δM i meas } 2 RR Meas (uncalibrated) Corr.Fac, ξ (R True /R Meas ) R Meas. (calibrated) isotopesTotal Atom (%) R121 1[ 12 C]98.94(±0.33) R130.010835 0.989 0300.01 0716[ 13 C] 1.06(±0.33) R161 1 [ 16 O]39.34(±0.55) R171.321183 0.986 159 1.302 897 [ 17 O]51.26(±0.33) R180.245532 0.972 319 0.232 093 [ 18 O] 9.39(±0.49) Note: Agreed to the vendor’s specificatoin: 17 O-enhanced ( 17 O atom > 45%).

5 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 5/13 JPL Calculation of Molecular abundances  Gas mixture at equilibrium: Sample purity = 100 % (given) Used statistical law to calculate molecular abundances  Molecular isotopologue abundances Iso#Isotopologues%Abundances $ %(δA/A) & 4[ 12 C 16 O 17 O][627]39.91 (±0.82) 2.1 8[ 12 C 17 O 17 O][727]26.00 (±0.34) 13.1 1[ 12 C 16 O 16 O][626]15.32 (±0.42) 2.7 [ 12 C 17 O 18 O][728] 9.53 (±0.56) 5.9 3[ 12 C 16 O 18 O][628] 7.31 (±0.48) 6.6 7[ 12 C 18 O 18 O][828] 0.87 (±0.09) 10.3 6[ 13 C 16 O 17 O][637] 0.43 (±0.14) 32.6 [ 13 C 17 O 17 O][737] 0.28 (±0.09) 32.1 2[ 13 C 16 O 16 O][636] 0.16 (±0.06) 37.5 0[ 13 C 17 O 18 O][738] 0.10 (±0.04) 40 5[ 13 C 16 O 18 O][638] 0.08 (±0.03) 37.5 9[ 13 C 18 O 18 O][838] 0.01 (±0.01)100 Total CO 2 100% $ Uncertainties in the parenthesis are relative to the total sample. & Uncertainties are relative to the individual isotopologue abundance.

6 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 6/13 JPL New FT-IR spectra with Herriot cell Arlan Mantz Bruker 125HR at JPL Herriott cell

7 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 7/13 JPL Instrumental set-up and experimental details Interferometer (Bruker IFS-125HR) IR sourceTungsten lamp (50 W) Beam splitterCaF 2 Resolution0.0056 cm -1 (unapodized) Aperture (diameter) 1.3 mm Focal length418 mm Optical filter range Filter#A: 4500 – 6500 cm -1 Filter#B: 5800 – 6800 cm -1 DetectorInSb (LN 2 cooled) FTS pressure< 0.010 hPa Gas absorption cell Herriott cell (Talk: TI07) BodyOFHC copper Base path (m)0.337 Path length (m) 20.941(6) Cell windowCaF 2 (wedged) Vacuum box window CaF 2 (wedged) Pure CO 2 spectrum Run # Opt. Filter rangeTotal sample Pressure (cm -1 )(Torr)(Atm) 03A4500-650096.930.12754 04B5500-680096.940.12755 05B5500-680044.980.05918 06A4500-650044.970.05917 07A4500-650018.590.02446 08B5500-680018.600.02447 09B5500-68009.6200.01266 10A4500-65009.6190.01266 11A4500-65004.9930.00657 12A4500-65002.0870.00275 13A4500-65001.0650.001401 14A4500-65000.50350.0006625 CO 2 and CO mixture spectrum rangeP(CO 2 )P(CO) (cm -1 )(Torr) 15 none2000-8500~ 0.924~ 0.1

8 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 8/13 JPL L = 20.941 m P = 0.5 – 98 Torr T = 296 K Resnl = 0.0056 cm -1 This work: 2 µm region Residual H 2 O HCl [626]; [627]; [628]; [727] Sample spectrum capturing various types of CO 2 isotopologues Future work

9 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 9/13 JPL Multispectrum fitting - Required a multispectrum fitting procedure - Employed the program by Jacquemart et al. (2002)

10 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 10/13 JPL Choice of line-shape profile: Rautian 4634.7736315(87) cm -1 6.5347(62) 10 -24 cm -1 /(molec.cm -2 ) 0.09795(22) cm -1 /atm 4634.7736308(67) 6.5899(49) 10 -24 cm -1 /(molec.cm -2 ) 0.10131(17) cm -1 /atm  Observed 0.85% on the line intensity: 3 % on line half width Voigt Rautian Position: Intensity: Broadening:

11 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 11/13 JPL Vibrational transition dipole moment squared |µ 0 | 2 and Herman Wallis factors The average (obs-calc) values of for the line intensities are given in% with 1SD after the ± sign. For |R 0 | 2, A 1 and A 2 the SD comes from the fit of these parameters.

12 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 12/13 JPL Summary Table Generation of complete line list - ongoing Band † Number of measurements Spectral range in cm -1 Band intensity ‡ (cm -1 /molecule.cm -2 ) 00021-00001 734604–4677 1.08×10 -21 01121-01101254604–4650 8.98×10 -23 20011-00001825012–5108 8.74×10 -21 20012-00001864884–4975 3.36×10 -20 20013-00001864763–4858 9.69×10 -21 21111-011011165046–5125 9.11×10 -22 21112-01101894884–4962 3.66×10 -21 21113-01101874738–4801 8.52×10 -22 30011-10001185165–5108 2.87×10 -23 30012-10001214893–4944 9.00×10 -23 30012-10002145004–5038 1.85×10 -23 30013-10002224886–4930 1.55×10 -22 30014-10002114742–4791 4.46×10 -23 22211-0220165090–5125 4.96×10 -23 22213-0220134743–4749 6.31×10 -23 ‡ The band intensity has been estimated through the sum of the calculated line intensities at 296K in cm -1 /(molecule.cm -2 ) for pure 16 O 12 C 17 O.

13 69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 13/13 JPL Thank you for your attention We also thank Chip Miller for providing the 17 O-enriched CO 2 sample, Max Coleman for the mass spec measurements of the CO 2 sample, Tim Crawford for the technical assistance on the data acquisition with a FT-IR. Acknowledgements Research described in this talk was performed at UPMC/CNRS (France), Connecticut College, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.


Download ppt "69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 1/13 JPL Progress Report Accurate line intensities for 16 O 12 C 17 O (627) in the 2.1 µm region (the."

Similar presentations


Ads by Google