Presentation is loading. Please wait.

Presentation is loading. Please wait.

Doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal.

Similar presentations


Presentation on theme: "Doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal."— Presentation transcript:

1 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Hitachi Direct Sequence UWB Impulse Radio System ] Date Submitted: [December 28th, 2004] Source: [(1)Akira Maeki, Ryosuke Fujiwara, Kenichi Mizugaki, Masayuki Miyazaki, Masaru Kokubo, (2)Yasuyuki Okuma, Miki Hayakawa, Shinsuke Kobayashi, Noboru Koshizuka, Ken Sakamura ] Company [(1) Hitachi, Ltd., Central Research Laboratory and Advanced Research Laboratory, (2) YRP Ubiquitous Networking Laboratory ] Address [(1) 1-280 Higashi Koigakubo Kokubunji-shi, Tokyo 185-8601 JAPAN (2)28 th KOWA Bldg., 2-20-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141-0031 JAPAN] Voice:[+81 42.323.1111], FAX: [+81 42.327.7849], E-Mail:[a-maeki@crl.hitachi.co.jp] Re: [Response to Call for Proposals] Abstract:[This document proposes Hitachi, Ltd.’s PHY proposal for the IEEE 802.15.4 alternate PHY standard] Purpose:[Proposal for the IEEE802.15.4a standard.] Notice:This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

2 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 2 Akira Maeki Hitachi, Ltd. Hitachi, Ltd. Proposal for IEEE 802.15.4a DS- UWB Impulse Radio

3 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 3 Contents DS-UWB IR Proposal Details of the System Evaluation Location Awareness Summary

4 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 4 Direct Sequence UWB Impulse Radio System (DS-UWB IR) Pulse Generator PA Transmitter PRF=Tens of MHz t Impulse Radio RF Receiver BB DBPSK PRF :Pulse Repetition Frequency

5 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 5 UWB Pulse and Spectrum Frequency (GHz) EIRP (dBm/MHz) Example: 2.5ns Gaussian Pulse Center Frequency=4.1GHz 10dB BW=1.4GHz TxPower (ave.)= - 9.8dBm Initial Target : Arbitrary Pulse in Low Band (3.1-5.1GHz) Low Band (3.1-5.1GHz) -40 -50 -60 -70 -80 -90 01234567891011 High Band (6-10GHz)

6 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 6 Why DS-UWB IR? Low Power Consumption : -Very Simple Architecture -Low Rate Sampling ADC : Tens of Msps, 4bits Low Cost : -CMOS Implementation is Feasible (Peak Power <10dBm) -Low Band (3.1-5.1GHz) High Location Accuracy : -Narrow Pulse (2.5ns)  ~30cm in 30m region (AWGN) Scalability : by Spread Factor 258kbps @30m (cf. ZigBee 250kbps @30-70m) 10.7Mbps @10m (cf. Bluetooth 1Mbps @10m)

7 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 7 Evaluation Results Scalability 258kbps at 30m, 10.7Mbps at 10m in AWGN channel Low Power Consumption Tx=30mW, Rx=120mW Low Cost CMOS implementation High Location Accuracy 30 cm at 30m (AWGN) x cm at y m (Indoor Residential LOS: CM1)

8 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 8 Benchmark Hitachi Proposal DS-UWB IEEE802.15.4 #1 #1: commercial chip example #2: Sampling Rate=64Msps Data Rate & Range Power Consumption Location Accuracy (30m range in AWGN) 10.7Mbps @10m 258kbps @30m Tx: 30mW Rx: 120mW 250kbps @30-70m 30cm2-3m #2 Tx: 50-60mW Rx: 50-60mW

9 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 9 Details of the System Evaluation 1. General Definitions 2. Signal Robustness 3. Technical Feasibility

10 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 10 1. General Definitions -Overview -Parameters for the Simulations -Scalability -Link Budget

11 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 11 Overview PAN coordinator FFD (Full Function Device) RFD (Reduced Function Device) Code 1 Code 2 Multiple Access: CDMA (Slide 18) 31chip M-Sequence System Parameters (Slide 12-14) Frame Format (Slide 19) System Performance (Slide 22) Transceiver (Slide 15) Tx Rx Interferer Coexistence (Slide 24) Tx (Slide 17) Rx (Slide 27-28) Location Awareness (Slide 33) Anchor Nodes (Known position) Sync. Node Code 3 SOP evaluation Not finished yet Interference

12 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 12 System Parameters Hardware specifications: Crystal =± 40ppm ADC=32Msps, 4bits (Including Location Awareness) Nominal Data RateRange Optional 258kbps 10.7Mbps 30m 10m Data Rate: 2.5ns Gaussian Pulse with PRF=32MHz (Data Rate depends on Spread Factor:124 for 258kbps, 3 for 10.7Mbps) 32MHz (=31ns) 2.5ns 1 symbol for 10.7Mbps mode (optional)

13 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 13 Scalability with spread factor Data RateModulationSpread Factor Number of Pulses / Bit 32.0 MbpsDBPSK11 10.7 MbpsDBPSK33 4.57 MbpsDBPSK77 2.13 MbpsDBPSK15 1.03 MbpsDBPSK31 258 kbpsDBPSK124 129 kbpsDBPSK248 PRF=32MHz

14 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 14 Link Budget Parameters Value 258kbps 30m Value 10.7Mbps 10m Units Center Frequency4096 MHz Transmit Power (2.5ns Gaussian Pulse) -9.8 dBm PRF32 MHz Spread Factor1243 Data Rate25810666kbps Path Loss at 1m44.7 dB Distance3010m Decay coefficient2.0 - Additional Path Loss at 30m,10m29.520.0dB Implementation Loss3.0 dB Antenna gain-3.0 dBi Required Eb/N0 @PER=1%, 32B14.09.8dB Noise Power Density-174 dBm Receiver Total NF7.0 dB Margin5.95.6dB

15 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 15 Transceiver Architecture Pulse Generator I Q LPF Digital Block Data LNA Transmitter Receiver LPF 0/90PLL Modulation & Spreading ADC Digital PHY Analog RF MAC Data Matched Filter Signal Acquisition Tracking Ranging etc. ANT. Switch BPF PA 4.1GHz <100kgates 32MHz, 4bits Xtal 40ppm Antenna

16 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 16 Modulation and Spreading ItemsSpecifications RF Frequency4096±700MHz (10dB BW) ModulationDBPSK SpreadingDirect Sequence DespreadingMatched Filter + Integration PRF32MHz SequenceM-Sequence

17 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 17 Modulation and Spreading Lengthvalue 11 41,1,0,1 81,1,1,0,0,1,0,1 D Spread Sequence 2 Spreading PG Spread Sequence 1 Differential Coding LengthValue 11 31,1,0 71,1,1,0,0,1,0 151,1,1,1,0,0,0,1,0,0,1,1,0,1,0 311,1,1,1,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0 Spread Sequence 1Spread Sequence 2 DATA Nominal Data Rate 258kbps Spread Factor =124 :Spread Sequence (4, 31) Optional Data Rate 10.7Mbps Spread Factor= 3 :Spread Sequence (1, 3 ) Spreading

18 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 18 Multiple Access Multiple access : CDMA Each Piconet has its own sequence (One sequence / Piconet) 31 chip M-sequence has 6 nearly orthogonal sequences. Sequence 11 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 Sequence 21 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 Sequence 30 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 Sequence 40 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 Sequence 50 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 Sequence 61 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 Auto Correlation Cross Correlation

19 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 19 Frame Format PPDU Octets: PHY Layer Preamble 201 Frame Length SFD 1 SHRPHRPSDU MPDU Data: 32 (n=23) Frame Cont. Seq. #Address Data Payload CRC Octets: 210/4/82 MAC Sublayer n MHRMSDUMFR For ACK: 5 (n=0)

20 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 20 System Throughput Time for transmission Nominal mode (X 0 = 258 kbps)  Throughput: 100 kbps … HDRPSDU 3222 HDR ACK 522 DATA Frame 1 t ACK t LIFS DATA Frame 2 HDRPSDU 3222 Acknowledged transmission

21 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 21 2. Signal Robustness -Multipath Immunity -Simultaneously Operating Piconets -Coexistence

22 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 22 System Performance in AWGN AWGN channel 0ppm ideal 40ppm ideal -40ppm ideal -40ppm worst 40ppm worst PER Eb/N0 (dB) Crystal Accuracy PSDU: 32Bytes

23 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 23 System Performance RangeAWGNCM1CM5 258 kbps30 mx 2 mx 3 m 10.7 Mbps10 my 2 my 3 m Results obtained using 4a channel model (doc #04/581r7). CM1: Indoor Residential (LOS), CM5: Outdoor (LOS) Preliminary evaluations

24 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 24 Coexistence The band allocation of 3.1-5.1GHz allows the coexistence with Wireless LANs & PANs (802.11a/b/g and 802.15.1/3/4) Frequency (GHz) EIRP (dBm/MHz) Low Band (3.1-5.1GHz) -40 -50 -60 -70 -80 -90 01234567891011 High Band (6-10GHz) UNII notch for “desired criteria” coexistence Meet the Desired Criteria in the 15.3a (Interferer at 0.3m) BPF: Rejection=30dB (@2.4GHz and 5GHz)

25 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 25 3. Technical Feasibility -Transceiver Architecture -Synchronization -Complexity -Evaluation by a Test Bed

26 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 26 Transceiver Architecture Pulse Generator I Q LPF Digital Block Data LNA Example: Transmitter Receiver LPF 0/90PLL Modulation & Spreading ADC Digital PHY Analog RF MAC Data Matched Filter Signal Acquisition Tracking Ranging etc. ANT. Switch BPF PA 4.1GHz <100kgates 32MHz, 4bits Rejection=30dB @2.4GHz&5GHz Xtal 40ppm Antenna

27 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 27 Synchronization × ~ CORR LO ADC × 90 CORR ABS + Detector Template Generator Threshold Detector ADC MF Timing Control Code Correlator ABS Pulse Correlator Analog Domain Digital Domain Two Step Synchronization: Pulse Correlation: Sliding Correlation Code Correlation: Digital Matched Filter Example:

28 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 28 2.5ns Tw=31.3ns Rx Signal Template  =0.5ns Sliding correlation for pulse synchronization Received Signal Template Wavelet Sampled data Sampling Timing Output Of MF Time Tw Symbol: Ts Acquisition  Two Step Synchronization No pulse sync. Pulse sync.

29 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 29 Unit Manufacturing Complexity Preliminary Evaluation Analog RF ** Size* *0.18  m Standard CMOS Process Digital PHY *** Base Band Ranging External Components ** Analog RF : LNA, Mixer, PLL, ADC (Slide 26) *** Base Band : Acquisition, Tracking etc. (Slide 26) Ranging : 1GHz Counter (Slide 37). Crystal =± 40ppm BPF (Rejection=30dB@2.4GHz&5GHz) Antenna -Ceramic Antenna -Pattern Antenna 100 kgates 1 kgates 12 mm 2

30 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 30 Manufacturability & Technical Feasibility

31 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 31 Feasibility Study by the Test Bed HDRPSDU 32 22 1000 Pseudo Random Packets Tx Rx Variable ATT. Propagation Loss PER Measurement -Send 1000 Pseudo random packets through the variable attenuator (Variable attenuator represents Propagation Loss) -Measure the PER PER<1% for 258kbps at 30m and 10.7Mbps at 10m

32 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 32 Location Awareness

33 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 33 Location Awareness Trilateration for Location Awareness - 3 Known-position Nodes (+1 sync. node) - Synchronization by a beacon or a sync. node - TDOA (Time Difference Of Arrival) based High Location Accuracy : AWGN: 30cm @30m Range Indoor Residential : xcm @ym Range

34 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 34 Active-TDOA One-way Ranging  Can relax the RFD specifications  High Accuracy for mobile node location Synchronization  Easier Sync. than TOA/OWR Accuracy Accuracy depends only on the clock at the FFD (Cf. TOA/TWR: Error will be sum up in two nodes) Transmit Only Will not waste the power for the signal reception RFD FFD (Anchor)

35 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 35 System Configuration System Configuration for 2D location measurements Node Server & Data Base Monitor Terminal Anchor Node 3 Anchor Node 1 Anchor Node 2 T2T2 T1T1 T3T3 TDOA (t 1 -T 1 ) TDOA (t 2 -T 2 ) TDOA (t 3 -T 3 ) Wireless/Wired Network Time of Arrival: t 1 t2t2 t3t3 “Calculation of the Node Location based on the TDOAs and the Reference Locations” For Sync. ---Synchronization by a node-- -Expand the Range -Asynchronous Anchors

36 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 36 TDOA Based Measuring time Signal from a node whose position is known time Anchor 1 Anchor 2 time The Location is calculated by the Time Difference those Signal from a node for location Anchor 1 Anchor 2 Anchor 1 Anchor 2 Anchors are not synchronized Temporary synchronization Measure the time difference of arrival Reference time ---Synchronization by a node--

37 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 37 Receiver Architecture Counter Memory Detection Timing Counter Sync. Demod. Count the time difference of arrival by the Counter The Counter and Memory are the additional circuits to the Rx (Gate size: About 1kgates) Receiver

38 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 38 Parameters for Simulations Packet Format: same packet as data transmission Channel Model : Indoor Residential LOS (CM1) Counter clock : 1GHz ADC : 32Msps Spread factor : 31 Number of trial : 100 for each distance

39 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 39 Summary DS-UWB IR is Simple, Scalable and Reliable 258kbps at 30m (Nominal), 10.7Mbps at 10m (Optional) Location Awareness: 30cm in 30m region (AWGN) In a regular packet transmission, with one additional counter. Proposed DS-UWB IR - fc=4.1GHz, BW=1.4GHz at Low Band (3.1-5.1GHz) - 2.5ns Gaussian Pulse with PRF of 32MHz - DBPSK Modulation - TDOA for Location Awareness

40 doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 40 Conclusion Still have evaluations to do… Can show the feasibility in March by the Test Bed and TEG chip - Scalable data rate up to 10.7Mbps at 10m - High Location Accuracy of ~30cm in 30m range are the main differentiation from the 15.4 system Hitachi DS-UWB IR System


Download ppt "Doc.: IEEE 802.15-04-0715-00-004a Submission December 2004 Akira Maeki, Hitachi, Ltd.Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal."

Similar presentations


Ads by Google