Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.

Similar presentations


Presentation on theme: "Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow."— Presentation transcript:

1 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow with effects select “View” on the menu bar and click on “Slide Show.” To advance through the presentation, click the right-arrow key or the space bar. From the resources slide, click on any resource to see a presentation for that resource. From the Chapter menu screen click on any lesson to go directly to that lesson’s presentation. You may exit the slide show at any time by pressing the Esc key.

2 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter Presentation Transparencies Lesson Starters Standardized Test PrepVisual Concepts Sample Problems Resources

3 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 11 Gases Section 1 Gases and Pressure Section 2 The Gas Laws Section 3 Gas Volumes and the Ideal Gas Law Section 4 Diffusion and Effusion

4 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Lesson Starter Make a list of gases you already know about. Separate your list into elements, compounds, and mixtures. Share your list with the class by writing it on the board. Section 1 Gases and Pressure Chapter 11

5 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Objectives Define pressure, give units of pressure, and describe how pressure is measured. State the standard conditions of temperature and pressure and convert units of pressure. Identify 3 variables that affect the volume of a gas. Section 1 Gases and Pressure Chapter 11

6 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Pressure and Force Pressure (P) is defined as the force per unit area on a surface. Gas pressure is caused by collisions of the gas molecules with each other and with surfaces with which they come into contact. The pressure exerted by a gas depends on volume, temperature, and the number of molecules present. The greater the number of collisions of gas molecules, the higher the pressure will be. Section 1 Gases and Pressure Chapter 11

7 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Visual Concepts Click below to watch the Visual Concept. Visual Concept Equation for Pressure Chapter 11

8 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Relationship Between Pressure, Force, and Area Chapter 11 Section 1 Gases and Pressure

9 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Visual Concepts Click below to watch the Visual Concept. Visual Concept Chapter 11 Barometer

10 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Units of Pressure Chapter 11 Section 1 Gases and Pressure

11 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Pressure and Force, continued Sample Problem A The average atmospheric pressure in Denver, Colorado is 0.830 atm. Express this pressure in a. millimeters of mercury (mm Hg) and b. kilopascals (kPa) Chapter 11 Section 1 Gases and Pressure

12 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Pressure and Force, continued Sample Problem A Solution Given: atmospheric pressure = 0.830 atm Unknown: a. pressure in mm Hg b. pressure in kPa Solution: conversion factor a. b. Chapter 11 Section 1 Gases and Pressure

13 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Sample Problem A Solution, continued conversion factor a. b. Pressure and Force, continued Chapter 11 Section 1 Gases and Pressure

14 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Dalton’s Law of Partial Pressures Chapter 11 Section 1 Gases and Pressure The pressure of each gas in a mixture is called the partial pressure of that gas. John Dalton, the English chemist who proposed the atomic theory, discovered that the pressure exerted by each gas in a mixture is independent of that exerted by other gases present. Dalton’s law of partial pressures states that the total pressure of a gas mixture is the sum of the partial pressures of the component gases.

15 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Visual Concepts Click below to watch the Visual Concept. Visual Concept Dalton’s Law of Partial Pressures Chapter 11

16 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Visual Concepts Click below to watch the Visual Concept. Visual Concept Chapter 11 Equation for Dalton’s Law of Partial Pressures

17 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Dalton’s Law of Partial Pressures, continued Gases Collected by Water Displacement Gases produced in the laboratory are often collected over water. The gas produced by the reaction displaces the water in the reaction bottle. Dalton’s law of partial pressures can be applied to calculate the pressures of gases collected in this way. Water molecules at the liquid surface evaporate and mix with the gas molecules. Water vapor, like other gases, exerts a pressure known as vapor pressure. Chapter 11 Section 1 Gases and Pressure

18 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu If you raise the bottle until the water levels inside and outside the bottle are the same, the total pressure outside and inside the bottle will be the same. Reading the atmospheric pressure from a barometer and looking up the value of at the temperature of the experiment in a table, you can calculate P gas. To determine the pressure of a gas inside a collection bottle, you would use the following equation, which is an instance of Dalton’s law of partial pressures. P atm = P gas + Chapter 11 Section 1 Gases and Pressure Dalton’s Law of Partial Pressures, continued Gases Collected by Water Displacement, continued

19 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Particle Model for a Gas Collected Over Water Chapter 11 Section 1 Gases and Pressure

20 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Dalton’s Law of Partial Pressures, continued Sample Problem B Oxygen gas from the decomposition of potassium chlorate, KClO 3, was collected by water displacement. The barometric pressure and the temperature during the experiment were 731.0 torr and 20.0°C. respectively. What was the partial pressure of the oxygen collected? Chapter 11 Section 1 Gases and Pressure

21 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Dalton’s Law of Partial Pressures, continued Sample Problem B Solution Given:P T = P atm = 731.0 torr = 17.5 torr (vapor pressure of water at 20.0°C, from table A-8 in your book) P atm = Unknown: in torr Solution: start with the equation: rearrange algebraically to: Chapter 11 Section 1 Gases and Pressure

22 Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Sample Problem B Solution, continued substitute the given values of P atm and into the equation: Dalton’s Law of Partial Pressures, continued Chapter 11 Section 1 Gases and Pressure


Download ppt "Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow."

Similar presentations


Ads by Google