Download presentation
Presentation is loading. Please wait.
Published byGervais Banks Modified over 9 years ago
1
In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced Institute of Science & Technology International Conference on Numerical Methods & Computational Mechanics The University of Miskolc, Hungary August 26, 1998 Efficient Free Vibration Analysis of Large Structures with Proportional and Non-Proportional Dampers
2
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 n Problem Definition n Proposed Method n Numerical Examples n Conclusions OUTLINE
3
Structural Dynamics & Vibration Control Lab., KAIST, Korea 2 PROBLEM DEFINITION n Dynamic Equation of Motion where : Mass matrix, Positive definite : Damping matrix : Stiffness matrix, Positive semi-definite : Displacement vector : Load vector : Order of K, C and M ( = 1,000 ~ 100,000) (1)
4
Structural Dynamics & Vibration Control Lab., KAIST, Korea 3 n Methods of Dynamic Analysis u Step by step integration method u Mode superposition method n Mode Superposition Method u Free vibration analysis must be first performed. u Most of computation time is required for free vibration analysis. An efficient solution technique is required !!!
5
Structural Dynamics & Vibration Control Lab., KAIST, Korea 4 n Condition of Proportional Damping u Ex. : Rayleigh Damping
6
Structural Dynamics & Vibration Control Lab., KAIST, Korea 5 Eigenvalue Problem ( Proportionally Damped Case ) (3) : Orthogonality of eigenvector : ith eigenvalue(real) : ith eigenvector(real) : Number of eigenpairs to be sought where (2)
7
Structural Dynamics & Vibration Control Lab., KAIST, Korea 6 n Current Methods for Proportionally Damped Case u Subspace iteration method u Determinant search method u Householder-QR-inverse iteration method n Techniques Used by Commercial Programs u ABAQUS- Subspace iteration method u ADINA- Subspace iteration method - Determinant search method u ANSYS- Subspace iteration method - Householder-QR method u NASTRAN- Givens method - Inverse power method u SAP Series- Subspace iteration method
8
Structural Dynamics & Vibration Control Lab., KAIST, Korea 7 (4) (5) : Orthogonality of eigenvector : ith eigenvalue(complex conjugate) : ith eigenvector(complex conjugate) : Number of eigenpairs to be sought where Eigenvalue Problem ( Non-Proportionally Damped Case )
9
Structural Dynamics & Vibration Control Lab., KAIST, Korea 8 Current Methods for Non-Proportionally Damped Case Transformation method: Kaufman (1974) Perturbation method: Meirovitch et al (1979) Vector iteration method: Gupta (1974; 1981) Subspace iteration method: Leung (1995) Lanczos method: Chen (1993) Efficient Methods
10
Structural Dynamics & Vibration Control Lab., KAIST, Korea 9 PROPOSED METHOD n Find p Smallest Eigenpairs Solve Subject to Forand : close or multiple roots where If p=1, then distinct root
11
Structural Dynamics & Vibration Control Lab., KAIST, Korea 10 n For Proportionally Damped Case (real) n For Non-Proportionally Damped Case (complex conjugate)
12
Structural Dynamics & Vibration Control Lab., KAIST, Korea 11 n Relations between and Vectors in the Subspace of where (6) (7) (8) u Let be the vectors in the subspace of and be orthonormal with respect to, then (9) (10)
13
Structural Dynamics & Vibration Control Lab., KAIST, Korea 12 where : Symmetric u Let (12) u Introducing Eq.(9) into Eq.(6) (11) or u Then or (13) (14) (15)
14
Structural Dynamics & Vibration Control Lab., KAIST, Korea 13 n Multiple or Close Eigenvalues u Multiple eigenvalues case : is a diagonal matrix. Eigenvalues : Eigenvectors : u Close eigenvalues case : is not a diagonal matrix. n Solve the small standard eigenvalue problem. n Get the following eigenpairs. Eigenvalues : Eigenvectors : (12) (9)
15
Structural Dynamics & Vibration Control Lab., KAIST, Korea 14 n Find the Vectors in the Subspace of the Eigenvectors. n Rotate the Vectors in the Subspace to Find the Eigenvectors. Strategy
16
Structural Dynamics & Vibration Control Lab., KAIST, Korea 15 (16) (17) where : unknown incremental values (18) (19) (20) Newton-Raphson Technique
17
Structural Dynamics & Vibration Control Lab., KAIST, Korea 16 where : residual vector (21) (22) u Introducing Eqs.(18) and (19) into Eqs.(16) and (17) and neglecting nonlinear terms u Matrix form of Eqs.(21) and (22) (23) Coefficient matrix : Symmetric Nonsingular
18
Structural Dynamics & Vibration Control Lab., KAIST, Korea 17 Modified Newton-Raphson Technique Coefficient matrix : Symmetric Nonsingular (24) (19) (18)
19
Structural Dynamics & Vibration Control Lab., KAIST, Korea 18 n Intermediate results by u Subspace iteration method : Proportionally damped case u Determinant search method n Results by Approximate Solution Methods such as u Static or dynamic condensation method Lanczos method : Non-Proportionally damped case Starting Eigenpairs
20
Structural Dynamics & Vibration Control Lab., KAIST, Korea 19 Step u Step 2: Solve for and u Step 3: Compute u Step 1: Start with approximate eigenpairs
21
Structural Dynamics & Vibration Control Lab., KAIST, Korea 20 u Step 4: Check the error norm. Error norm = If the error norm is more than the tolerance, then go to Step 2 and if not, go to Step 5. u Step 5: Check if is a diagonal matrix, go to Step 6, if not, go to Step 7.
22
Structural Dynamics & Vibration Control Lab., KAIST, Korea 21 u Step 7: Close case u Step 6: Multiple case n Go to step 8. u Step 8: Check the error norm. Error norm = u Stop !
23
Structural Dynamics & Vibration Control Lab., KAIST, Korea 22 NUMERICAL EXAMPLES: Proportionally Damped Case n Structures u Three-dimensional framed structure(distinct) u Simply-supported rectangular plate(multiple & close) u Cooling tower(multiple) n Analysis Methods u Proposed method u Subspace iteration method u Determinant search method n Comparisons u CPU time u Convergence n IRIS4D20-S17 with 10 MIPS, 0.9 MFLOPS
24
Structural Dynamics & Vibration Control Lab., KAIST, Korea 23 Three-Dimensional Framed Structure (Distinct Case) Elevation Plan Material Property Young’s modulus : 2.068E10 Pa Mass density : 5.154E2 kg/m 3 - Column in Front Building I : 8.631E-3 m 4, A : 0.2787 m 2 - Column in Rear Building I : 10.787E-3 m 4, A : 0.3716 m 2 - All Beams into x-Direction I : 6.473E-3 m 4, A : 0.6906 m 2 - All Beams into y-Direction I : 8.631E-3 m 4, A : 0.2787 m 2 System Data Number of equations : 468 Number of matrix elements : 42498 Maximum half-bandwidth : 138 Mean half-bandwidth : 91
25
Structural Dynamics & Vibration Control Lab., KAIST, Korea 24 Eigenvalues (Distinct), 3-D. Frame
26
Structural Dynamics & Vibration Control Lab., KAIST, Korea 25 Starting values : Subspace iteration method Relative error = 10 -1 Relative error = Error norm = p = No. of eigenpairs Solution Time (sec), 3-D. Frame
27
Structural Dynamics & Vibration Control Lab., KAIST, Korea 26 Convergence of the 12th eigenpair 3-D. framed structure (distinct) : Proposed Method : Subspace Iteration Method (q=2p) : Determinant Search Method Error Limit
28
Structural Dynamics & Vibration Control Lab., KAIST, Korea 27 Simply-Supported Rectangular Plate Material Properties Young’s Modulus: 2.0E11 Pa Mass Density: 7.850E3 kg/m 3 Poisson Ratio: 0.3 Thickness: 0.01m System Data Number of Equations: 701 Number of Matrix Elements: 62,301 Maximum Half Bandwidths: 133 Mean Half Bandwidths: 89 (a) Multiple eigenvalues (b) Close eigenvalues
29
Structural Dynamics & Vibration Control Lab., KAIST, Korea 28 Eigenvalues (Multiple), Square Plate
30
Structural Dynamics & Vibration Control Lab., KAIST, Korea 29 Starting values : Subspace iteration method Relative error = 10 -1 Relative error = Error norm = p = No. of eigenpairs Solution Time (sec), Square Plate
31
Structural Dynamics & Vibration Control Lab., KAIST, Korea 30 Convergence of the 8th eigenpair Square plate (multiple) : Proposed Method : Subspace Iteration Method (q=2p) : Determinant Search Method Error Limit
32
Structural Dynamics & Vibration Control Lab., KAIST, Korea 31 Eigenvalues (Close), Plate
33
Structural Dynamics & Vibration Control Lab., KAIST, Korea 32 Starting values : Subspace iteration method Relative error = 10 -1 Relative error = Error norm = p = No. of eigenpairs Solution Time (sec), Plate
34
Structural Dynamics & Vibration Control Lab., KAIST, Korea 33 Convergence of the 8th eigenpair Plate (close) : Proposed Method : Subspace Iteration Method (q=2p) : Determinant Search Method Error Limit
35
Structural Dynamics & Vibration Control Lab., KAIST, Korea 34 Material Properties Young’s Modulus: 4.32E8 lb/ft 2 Mass Density: 4.66 slug/ft 3 Poisson Ratio: 0.15 Shell Thickness: 0.583 ft System Data Number of Equations: 2,448 Number of Matrix Elements: 490,572 Maximum Half Bandwidths: 2,358 Mean Half Bandwidths: 201 Cooling Tower(Multiple Case) Elevation Plan
36
Structural Dynamics & Vibration Control Lab., KAIST, Korea 35 Eigenvalues (Multiple), Cooling Tower
37
Structural Dynamics & Vibration Control Lab., KAIST, Korea 36 Starting values : Subspace iteration method Relative error = 10 -1 Relative error = Error norm = p = No. of eigenpairs Solution Time (sec), Cooling Tower
38
Structural Dynamics & Vibration Control Lab., KAIST, Korea 37 Convergence of the 10th eigenpair Cooling tower (multiple) : Proposed Method : Subspace Iteration Method (q=2p) Error Limit
39
Structural Dynamics & Vibration Control Lab., KAIST, Korea 38 NUMERICAL EXAMPLES: Non-Proportionally Damped Case n Structures u Cantilever beam(distinct) u Grid structure(multiple) u Three-dimensional framed structure(close) n Analysis Methods u Proposed method u Subspace iteration method (Leung 1988) u Lanczos method (Chen 1993) n Comparisons u Solution time(CPU) u Convergence n Convex with 100 MIPS, 200 MFLOPS
40
Structural Dynamics & Vibration Control Lab., KAIST, Korea 39 Cantilever Beam with Lumped Dampers (Distinct Case) 123499100101 C 5 Material Properties Tangential Damper :c = 0.3 Rayleigh Damping : = = 0.001 Young’s Modulus :1000 Mass Density :1 Cross-section Inertia :1 Cross-section Area :1 System Data Number of Equations :200 Number of Matrix Elements :696 Maximum Half Bandwidths :4 Mean Half Bandwidths :4
41
Structural Dynamics & Vibration Control Lab., KAIST, Korea 40 Results of Cantilever Beam Structure (Distinct) Number of Lanczos vectors = 20
42
Structural Dynamics & Vibration Control Lab., KAIST, Korea 41 CPU Time for 10 Lowest Eigenpairs, Cantilever Beam
43
Structural Dynamics & Vibration Control Lab., KAIST, Korea 42 Convergence by Lanczos method(Chen 1993) Cantilever beam (distinct) Starting values of proposed method : 1st, 2nd eigenpairs : 3rd, 4th eigenpairs : 5th, 6th eigenpairs : 7th, 8th eigenpairs : 9th, 10th eigenpairs
44
Structural Dynamics & Vibration Control Lab., KAIST, Korea 43 Convergence of the 1st eigenpair Cantilever beam (distinct) : Proposed Method : Subspace Iteration Method (q=2p)
45
Structural Dynamics & Vibration Control Lab., KAIST, Korea 44 Convergence of the 5th eigenpair Cantilever beam (distinct) : Proposed Method : Subspace Iteration Method (q=2p)
46
Structural Dynamics & Vibration Control Lab., KAIST, Korea 45 Grid Structure with Lumped Dampers (Multiple Case) Material Properties Tangential Damper :c = 0.3 Rayleigh Damping : = = 0.001 Young’s Modulus :1,000 Mass Density :1 Cross-section Inertia :1 Cross-section Area :1 System Data Number of Equations :590 Number of Matrix Elements :8,115 Maximum Half Bandwidths :15 Mean Half Bandwidths :14 100@0.1=10
47
Structural Dynamics & Vibration Control Lab., KAIST, Korea 46 Results of Grid Structure (Multiple) Number of Lanczos vectors = 48
48
Structural Dynamics & Vibration Control Lab., KAIST, Korea 47 CPU Time for 12 Lowest Eigenpairs, Grid Structure
49
Structural Dynamics & Vibration Control Lab., KAIST, Korea 48 Convergence by Lanczos method(Chen 1993) Grid structure (multiple) : 1st, 3rd eigenpairs : 2nd, 4th eigenpairs : 5th, 7th eigenpairs : 6th, 8th eigenpairs : 9th, 11th eigenpairs : 10th, 12th eigenpairs Starting values of proposed method
50
Structural Dynamics & Vibration Control Lab., KAIST, Korea 49 Convergence of the 2nd eigenpair Grid structure (multiple) : Proposed Method : Subspace Iteration Method (q=2p)
51
Structural Dynamics & Vibration Control Lab., KAIST, Korea 50 Convergence of the 9th eigenpair Grid structure (multiple) : Proposed Method : Subspace Iteration Method (q=2p)
52
Structural Dynamics & Vibration Control Lab., KAIST, Korea 51 Three-Dimensional Framed Structure with Lumped Dampers(Close Case) 2@3.01=6.02 6@3=18 2@3=6 6@3.01=18.06 12@3=36
53
Structural Dynamics & Vibration Control Lab., KAIST, Korea 52 Material Properties Lumped Damper :c = 12,000.0 Rayleigh Damping : =-0.1755 = 0.02005 Young’s Modulus :2.1E+11 Mass Density :7,850 Cross-section Inertia :8.3E-06 Cross-section Area :0.01 System Data Number of Equations :1,128 Number of Matrix Elements :135,276 Maximum Half Bandwidths :300 Mean Half Bandwidths :120
54
Structural Dynamics & Vibration Control Lab., KAIST, Korea 53 Results of Three-Dimensional Framed Structure (Close) Number of Lanczos vectors = 48
55
Structural Dynamics & Vibration Control Lab., KAIST, Korea 54 CPU Time for 12 Lowest Eigenpairs, 3-D. Framed Structure
56
Structural Dynamics & Vibration Control Lab., KAIST, Korea 55 Convergence by Lanczos method(Chen 1993) 3-D. framed structure (close) : 1st, 2nd eigenpairs : 3rd, 4th eigenpairs : 5th, 6th eigenpairs : 7th, 8th eigenpairs : 9th, 10th eigenpairs : 11th, 12th eigenpairs Starting values of proposed method
57
Structural Dynamics & Vibration Control Lab., KAIST, Korea 56 Convergence of the 9th eigenpair 3-D. framed structure (close) : Proposed Method : Subspace Iteration Method (q=2p)
58
Structural Dynamics & Vibration Control Lab., KAIST, Korea 57 CONCLUSIONS n The proposed method u is simple u guarantees numerical stability u converges fast. An efficient solution technique !
59
Structural Dynamics & Vibration Control Lab., KAIST, Korea 58 Thank you for your attention.
60
Structural Dynamics & Vibration Control Lab., KAIST, Korea 59 Convergence of the 3rd eigenpair Cantilever beam (distinct) : Proposed Method : Subspace Iteration Method
61
Structural Dynamics & Vibration Control Lab., KAIST, Korea 60 Convergence of the 7th eigenpair Cantilever beam (distinct) : Proposed Method : Subspace Iteration Method
62
Structural Dynamics & Vibration Control Lab., KAIST, Korea 61 Convergence of the 9th eigenpair Cantilever beam (distinct) : Proposed Method : Subspace Iteration Method
63
Structural Dynamics & Vibration Control Lab., KAIST, Korea 62 Convergence of the 10th eigenpair Grid structure (multiple) : Proposed Method : Subspace Iteration Method
64
Structural Dynamics & Vibration Control Lab., KAIST, Korea 63 Convergence of the 5th eigenpair 3-D. framed structure (close) : Proposed Method : Subspace Iteration Method
65
Structural Dynamics & Vibration Control Lab., KAIST, Korea 64 Convergence of the 7th eigenpair 3-D. framed structure (close) : Proposed Method : Subspace Iteration Method
66
Structural Dynamics & Vibration Control Lab., KAIST, Korea 65 Convergence of the 11th eigenpair 3-D. framed structure (close) : Proposed Method : Subspace Iteration Method
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.