Download presentation
Presentation is loading. Please wait.
Published byGiles Cobb Modified over 9 years ago
1
8GHz, lV, High Linearity, Low Power CMOS Active Mixer Farsheed Mahrnoudi and C. Andre T. Salama The Edward S. Rogers Sr. Department of Electrical & Computer Engineering University of Toronto 指導教授 : 林志明 級別 : 體積所碩一 學生 : 呂致遠 Mail:s94662010@mail.ncue.edu.tw 民國 95 年 3 月 28 日
2
Outline Abstract Introduction Propose Schematic Microphotograph Experimental result Characteristics Conclusion References
3
Abstract 8-GHz high linearity current commutating CMOS RF mixer Novel RF transcondoctor stage Bias-offset technique. 0.18um CMOS technology and operating at 1V power supply Simplicity of design and satisfying potential requirements for 4G mobile communication systems
4
Introduction 4G targets a data rate of 100 Mbps High RF front-end linearity Integrated active mixers Improve the linearity of RF transcondnctors based on harmonic tuned multiple gate transistors Bias-offset technique demonstrated good linearity while maintaining design simplicity. 1V power supply, High linearity in 4G
5
Propose An appropriate value of gate voltage biasing offset of the input transconductor transistors (Voffset=750 rnV in this case) results in a constant transconductance over a relatively wide range of input differential voltages which in turn translates into excellent linearity performance for the mixer.
6
Schematic Low-pass load to eliminate any undesirable high frequency content in The output signal Resonators instead of the conventiona l current sources to enable low- voltage operation C1 provides a feed-forward Ac-coupled Gilbert circuit improve the NF MI and M2, or M3and M4 using Voffset compensate non- linearity M5, M6, M7 and M8. adjustment of the bias offset
7
Microphotograph
8
Experimental result(IIP3)
9
Experimental result(P-1dB)
10
Experimental result(NF)
11
Characteristics
12
Conclusion Bias-offset technique Low operating supply voltage High linearity Good isolation IIP3 and NF are better 4G mobile communication systems
13
References [1] Y. Mochida, T. Takano, H. Gambe, ‘*Future Directions and Technology Requirements of Wireless Communications:’ IEEE lnrernarional Elecrron Devices Meerine (IEDMJ. Technical I. Digest,pp. 1.3.1 - 1.3.8, 2001. [2] R. C. Sagers, “Intercept Point and Undesired Responses:’ IEEE Transactions on Vehicular Technology, Vol. 32, pp. 121 - 12% t 0 P f a.,., 1,”_1. [3] Q. Li, 1. Zhang, W. Li and J. S. Yuan, “CMOS RF Mixer Non-Linearity Design:’ IEEE 43d Midwest symposium on Circuits and Sysrems, Proceedings, pp. 808 - 81 I, 2001. [4] Youngwook Kim, Youngsik Kim and S. Lee, “Linearized Mixer Using Predistortion Technique:’ IEEE Microwave and Wireless Componenrs Lerrers, Vol. 12, pp. 204 - 205,200’2. [5] T. W. Kim, B. Kim and K. Lee, “Highly Linear RF CMOS Amplifier and Mixer Adopting MOSFET Transconductance Linearization by Multiple Gated Transistors:’ IEEE Radio Frequency lnregrared Circuits Symposium, Proceedings, pp. 107-1 10,2003.
14
References [6] Z. Wang and W. Guggenbuhl, “A VoltageControllable Linear MOS Transconductor Using Bias Offset Technique,” IEEE Journal of Solid-Srare Circuits, Vol. 25, pp. 315 - 317, 1990. [7] E Mahmoudi and C.A.T. Salama, US Parenr, Applied for. 2003. [8] M. SteyaerI, “Single Chip CMOS RF Transceivers: Wishful Thinking or Reality:’ IEE Seminar on Low Power lntegrared Circuir Design, Proceedings, pp. 1/1 - 1/6, 2001. [9]I T. Manku, ‘Low Voltage Topology for Radio Frequency Circuit Design:’ US-Parenr 6,232,848 (2M)I) [IO] A. N. Karanicolas, “A 2.7V 900 MHz CMOS LNA and Mixer:‘lEEE Journal ofSolid-Stare Cirruirs. Vol. 31. DD. 1939... - 1944,1996. [Il] M. Lefevre and P. Okrah, “Making the Leap lo 4G Wireless,” EE 7imes Nehvork. Communication Sysrem Design, July 2001. 404
15
Q&A THANK YOU FOR LISTENING
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.