Presentation is loading. Please wait.

Presentation is loading. Please wait.

Production of Gasoline Components from Synthesis Gas ChE 397 Senior Design Group Alpha Ayesha Rizvi Bernard Hsu Jeff Tyska Mohammad Shehadeh Yacoub Awwad.

Similar presentations


Presentation on theme: "Production of Gasoline Components from Synthesis Gas ChE 397 Senior Design Group Alpha Ayesha Rizvi Bernard Hsu Jeff Tyska Mohammad Shehadeh Yacoub Awwad."— Presentation transcript:

1 Production of Gasoline Components from Synthesis Gas ChE 397 Senior Design Group Alpha Ayesha Rizvi Bernard Hsu Jeff Tyska Mohammad Shehadeh Yacoub Awwad 2011.04.26

2 Overview  Process Basics  Block Flow Diagram  Plant and Equipment Layout  General Economics  Conclusions and Further Improvements

3 Our Process H2H2

4 Process Equation 2H 2 + CO ZSM-5 C 5 + + H 2 O + LPG (C3/C4)

5 Why Gasoline and Mobil Process?  Existing infrastructure  Established and high demand product  Great amount of C5+ gasoline in the final product  Lower Gasoline Price  Reduced Sox/GHG emissions  Easy to scale  Renewable feedstock  Energy Independence SO 2

6 Competing Processes  Fischer-Tropsch  Oil  Tar Sands (2n+1) H 2 + n CO → C n H(2n+2) + n H 2 O http://portland.indymedia.org/media/image s/2010/12/404850.jpg http://tonto.eia.doe.gov/country/index.cfm?view=production 43%

7 Process Summary  Syngas  Methanol  Methanol  Water/Hydrocarbons  Water/Hydrocarbons  Water + Hydrocarbons  Hydrocarbons  Gasoline and Liquefied Petroleum Gas (LPG)

8 Block Flow Diagram Methanol Reactor CO H2H2 MeOH H 2, CO Cooling and Separation MeOH H 2, CO Methanol to Gasoline (MTG) Reactors Water Separation Hydrocarbons Water Hydrocarbons Deethanizer (Dist. Col.) C1/C2 Distillation Columns Heavy Hydrocarbons Liquefied Petroleum Gas Gasoline Purge

9 Methanol Reactor Cooling and Separation T (518F) P (725psi) CO 15,967 lbmol/hr H2 31,935 lbmol/hr T (518F) P (725psi) CO 23,059 lbmol/hr H2 58,373 lbmol/hr MeOH 15,948 lbmol/hr T (345F) P (725psi) CO 22,464 lbmol/hr H2 57,182 lbmol/hr MeOH 576 lbmol/hr T (518F) P (725psi) CO 23,059 lbmol/hr H2 58,373 lbmol/hr MeOH 15,948 lbmol/hr T (364F) P (435psi) T (364F) P (435psi) MeOH 5 lbmol/hr CO 136 lbmol/hr H2 23 lbmol/hr Rec Syngas Syngas Syngas & MeOH Syngas MeOH

10 Methanol to Gasoline (MTG) Reactors Water Separation T (716F) P (362psi) H2O 15,111 lbmol/hr L.G(C1,C2) 211.8 lbmol/hr LPG(C3,C4) 792.5 lbmol/hr C5+(gasoline)2290.8 lbmol/hr MeOH 5 lbmol/hr T (364F) P (435psi) H2O 15,109 lbmol/hr T (305F) P (72psi) H2O 2 lbmol/hr L.G(C1,C2) 211.8 lbmol/hr LPG(C3,C4) 792.5 lbmol/hr C5+(gasoline)2290.8 lbmol/hr T (68F) P (391psi) MeOH Hydrocarbons/ Water Water Hydrocarbons

11 Deethanizer (Dist. Col.) Distillation Columns H2O 2 lbmol/hr L.G(C1,C2) 211.8 lbmol/hr LPG(C3,C4) 792.5 lbmol/hr C5+(gasoline)2290.8 lbmol/hr L.G(C1,C2) 209.2 lbmol/hr LPG(C3,C4) 121.5 lbmol/hr C5+(gasoline) 0.02 lbmol/hr H2O 2 lbmol/hr LPG(C3,C4) 670 lbmol/hr C5+(gasoline)2290.1 lbmol/hr T (68F) P (391psi) T (71F) P (391psi) T (365F) P (363psi) H2O 1.3 lbmol/hr LPG(C3,C4) 663 lbmol/hr C5+(gasoline)485 lbmol/hr H2O 0.30 lbmol/hr LPG(C3,C4) 7.6 lbmol/hr C5+(gasoline)1,805 lbmol/hr T (101F) P (96psi) T (77F) P (73psi) GasolineLPG C1/C2 Heavy Hydrocarbons

12 Design Basis  6000 Short tons syngas/day  518 °F (270 °C)  725 psi (5 Mpa)  Product  Gasoline – 15,974 barrels/day  LPG – 4,263 barrels/day

13 MTG Reactor Sizing   10 Ft/Sec

14 General Plant Layout

15 Site Plan

16 Process Building

17 Economics  Capital Cost = $374 Million  Syngas cost = $250/ton  Gasoline Sold at $2.75 / gallon  LPG sold at $1.00 / gallon  Plant is profitable  30% IRR  $1.473 billion NPV  $104 Million in profit / year

18 Gasoline Price Dependence

19 Future of the Mobil Process  Coal to gasoline  Plants are starting to be built  Primus Green – Pennsylvania  Biomass to Gasoline  South Dakota – New plant in 2012

20 Process Overview  6000 Short Tons / Day Syngas Feed  Gasoline- 15,974 barrels/day @ $2.75/gal  LPG – 4,263 barrels/day @ $1.00/gal  Newton County, Indiana  Adjacent to Gasification Plant  Plant is profitable  Capital Cost = $374 Million  Syngas cost = $250/ton  30% IRR  $1.473 billion NPV  $104 Million in profit / year

21 Conclusions & Further Improvements Further Improvements  Reacting out Durene to increase gasoline quality.  Alkylation of C4 olefins.  Air coolers to reduce cooling water loads.  New methods of catalyst regeneration for ZSM-5.  Different distillation column set-ups.  Pinch analysis for the process. Durene

22 Questions From Last Presentation  Our catalyst regeneration for the MTG results in higher alcohols. Is this okay?  Yes, they will also be converted to gasoline components  You should decouple the reboiler heat duty from the flow of the feed to the distillation columns  We will be using bias control

23 Important References  Phillips, S. D., Tarud, J. K., Biddy, M. J., & Dutta, A. (2010, January). Gasoline from Wood via integrated gasification, synthesis and methanol to gasoline technology. Retrieved from nrel.gov: http://www.nrel.gov/docs/fy11osti/47594.pdf http://www.nrel.gov/docs/fy11osti/47594.pdf  (1994). Kirk-Othmer Encyclopedia of Chemical Technology. In Volume 22 (pp. p 166-168).  Exxon Mobil Research and Engineering. (2009). Methanol to Gasoline: Production of clean gasoline from coal.  Kooy, P., & Kirk, D. C. (n.d.). The production of methanol and gasoline. Retrieved from http://nzic.org.nz/ChemProcesses/energy/7D.pdf Questions?


Download ppt "Production of Gasoline Components from Synthesis Gas ChE 397 Senior Design Group Alpha Ayesha Rizvi Bernard Hsu Jeff Tyska Mohammad Shehadeh Yacoub Awwad."

Similar presentations


Ads by Google