Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 16 The Molecular Basis of Inheritance. DNA Structure Rosalind Franklin took diffraction x-ray photographs of DNA crystals In the 1950’s, Watson.

Similar presentations


Presentation on theme: "Chapter 16 The Molecular Basis of Inheritance. DNA Structure Rosalind Franklin took diffraction x-ray photographs of DNA crystals In the 1950’s, Watson."— Presentation transcript:

1 Chapter 16 The Molecular Basis of Inheritance

2 DNA Structure Rosalind Franklin took diffraction x-ray photographs of DNA crystals In the 1950’s, Watson & Crick built the first model of DNA using Franklin’s x-rays

3 Rosalind FranklinFrances Crick & James Watson X-ray diffraction photograph of DNA, 1953 Proposed double helix model 1953

4 Concept 16.1: DNA is the genetic material Early in the 20th century, the identification of the molecules of inheritance loomed as a major challenge to biologists Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

5 The Search for the Genetic Material: Scientific Inquiry When T. H. Morgan’s group showed that genes are located on chromosomes, the two components of chromosomes—DNA and protein—became candidates for the genetic material The key factor in determining the genetic material was choosing appropriate experimental organisms The role of DNA in heredity was first discovered by studying bacteria and the viruses that infect them Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

6 Evidence That DNA Can Transform Bacteria The discovery of the genetic role of DNA began with research by Frederick Griffith in 1928 Griffith worked with two strains of a bacterium, one pathogenic and one harmless Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

7 When he mixed heat-killed remains of the pathogenic strain with living cells of the harmless strain, some living cells became pathogenic He called this phenomenon transformation, now defined as a change in genotype and phenotype due to assimilation of foreign DNA Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

8 Fig. 16-2 RESULTS EXPERIMENT

9 In 1944, Oswald Avery, Maclyn McCarty, and Colin MacLeod announced that the transforming substance was DNA Their conclusion was based on experimental evidence that only DNA worked in transforming harmless bacteria into pathogenic bacteria Many biologists remained skeptical, mainly because little was known about DNA

10 Evidence That Viral DNA Can Program Cells More evidence for DNA as the genetic material came from studies of viruses that infect bacteria Such viruses, called bacteriophages (or phages), are widely used in molecular genetics research Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: Phage T2 Reproductive Cycle Animation: Phage T2 Reproductive Cycle

11 Fig. 16-3 Bacterial cell Phage head Tail sheath Tail fiber DNA 100 nm

12 In 1952, Alfred Hershey and Martha Chase performed experiments showing that DNA is the genetic material of a phage known as T2 To determine the source of genetic material in the phage, they designed an experiment showing that only one of the two components of T2 (DNA or protein) enters an E. coli cell during infection They concluded that the injected DNA of the phage provides the genetic information Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: Hershery-Chase Experiment Animation: Hershery-Chase Experiment

13 Fig. 16-4-1 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P)

14 Fig. 16-4-2 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty protein shell Phage DNA

15 Fig. 16-4-3 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty protein shell Phage DNA Centrifuge Pellet Pellet (bacterial cells and contents) Radioactivity (phage protein) in liquid Radioactivity (phage DNA) in pellet

16 Additional Evidence That DNA Is the Genetic Material It was known that DNA is a polymer of nucleotides, each consisting of a nitrogenous base, a sugar, and a phosphate group In 1950, Erwin Chargaff reported that DNA composition varies from one species to the next This evidence of diversity made DNA a more credible candidate for the genetic material Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: DNA and RNA Structure Animation: DNA and RNA Structure

17 Chargaff’s rules state that in any species there is an equal number of A and T bases, and an equal number of G and C bases Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

18 Fig. 16-5 Sugar–phosphate backbone 5 end Nitrogenous bases Thymine (T) Adenine (A) Cytosine (C) Guanine (G) DNA nucleotide Sugar (deoxyribose) 3 end Phosphate

19 Fig. 16-7a Hydrogen bond 3 end 5 end 3.4 nm 0.34 nm 3 end 5 end (b) Partial chemical structure(a) Key features of DNA structure 1 nm

20 Fig. 16-8 Cytosine (C) Adenine (A)Thymine (T) Guanine (G)

21 Concept 16.2: Many proteins work together in DNA replication and repair The relationship between structure and function is manifest in the double helix Watson and Crick noted that the specific base pairing suggested a possible copying mechanism for genetic material Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

22 The Basic Principle: Base Pairing to a Template Strand Since the two strands of DNA are complementary, each strand acts as a template for building a new strand in replication In DNA replication, the parent molecule unwinds, and two new daughter strands are built based on base-pairing rules Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: DNA Replication Overview Animation: DNA Replication Overview

23 Fig. 16-9-1 A T G C TA TA G C (a) Parent molecule

24 Fig. 16-9-2 A T G C TA TA G C A T G C T A T A G C (a) Parent molecule (b) Separation of strands

25 Fig. 16-9-3 A T G C TA TA G C (a) Parent molecule AT GC T A T A GC (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand (b) Separation of strands A T G C TA TA G C A T G C T A T A G C

26 Watson and Crick’s semiconservative model of replication predicts that when a double helix replicates, each daughter molecule will have one old strand (derived or “conserved” from the parent molecule) and one newly made strand Competing models were the conservative model (the two parent strands rejoin) and the dispersive model (each strand is a mix of old and new) Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

27 Fig. 16-10 Parent cell First replication Second replication (a) Conservative model (b) Semiconserva- tive model (c) Dispersive model

28 Experiments by Matthew Meselson and Franklin Stahl supported the semiconservative model They labeled the nucleotides of the old strands with a heavy isotope of nitrogen, while any new nucleotides were labeled with a lighter isotope Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

29 The first replication produced a band of hybrid DNA, eliminating the conservative model A second replication produced both light and hybrid DNA, eliminating the dispersive model and supporting the semiconservative model Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

30 Fig. 16-11a EXPERIMENT RESULTS 1 3 2 4 Bacteria cultured in medium containing 15 N Bacteria transferred to medium containing 14 N DNA sample centrifuged after 20 min (after first application) DNA sample centrifuged after 20 min (after second replication) Less dense More dense

31 Fig. 16-11b CONCLUSION First replicationSecond replication Conservative model Semiconservative model Dispersive model

32 DNA Replication: A Closer Look The copying of DNA is remarkable in its speed and accuracy More than a dozen enzymes and other proteins participate in DNA replication Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

33 Getting Started Replication begins at special sites called origins of replication, where the two DNA strands are separated, opening up a replication “bubble” A eukaryotic chromosome may have hundreds or even thousands of origins of replication Replication proceeds in both directions from each origin, until the entire molecule is copied Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: Origins of Replication Animation: Origins of Replication

34 Fig. 16-12a Origin of replication Parental (template) strand Daughter (new) strand Replication fork Replication bubble Double- stranded DNA molecule Two daughter DNA molecules (a) Origins of replication in E. coli 0.5 µm

35 Fig. 16-12b 0.25 µm Origin of replicationDouble-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter DNA molecules (b) Origins of replication in eukaryotes

36 36 DNA Replication Before new DNA strands can form, there must be RNA primers present to start the addition of new nucleotides Primase is the enzyme that synthesizes the RNA Primer DNA polymerase can then add the new nucleotides

37 DNA Replication Begins at Origins of ReplicationBegins at Origins of Replication Two strands open forming Replication Forks (Y-shaped region)Two strands open forming Replication Forks (Y-shaped region) New strands grow at the forksNew strands grow at the forks 3’ 5’ 3’ 5’

38 DNA Replication

39 As the 2 DNA strands open at the origin, Replication Bubbles form Prokaryotes (bacteria) have a single bubble Eukaryotic chromosomes have MANY bubbles

40 DNA Replication Enzyme Helicase unwinds and separates the 2 DNA strands by breaking the weak hydrogen bonds Single-Strand Binding Proteins attach and keep the 2 DNA strands separated and untwisted

41 DNA Replication Enzyme Topoisomerase attaches to the 2 forks of the bubble to relieve stress on the DNA molecule as it separates

42 Fig. 16-13 Topoisomerase Helicase Primase Single-strand binding proteins RNA primer 5 5 53 3 3

43 DNA Replication Before new DNA strands can form, there must be RNA primers present to start the addition of new nucleotides Primase is the enzyme that synthesizes the RNA Primer DNA polymerase can then add the new nucleotides

44 DNA Replication DNA polymerase can only add nucleotides to the 3’ end of the DNA This causes the NEW strand to be built in a 5’ to 3’ direction RNA Primer DNA Polymerase Nucleotide 5’ 3’ Direction of Replication

45 Synthesis of the New DNA Strands  The Leading Strand is synthesized as a single strand from the point of origin toward the opening replication fork RNA Primer DNA Polymerase Nucleotides 3’5’

46 Synthesis of the New DNA Strands  The Lagging Strand is synthesized discontinuously against overall direction of replication  This strand is made in MANY short segments It is replicated from the replication fork toward the origin RNA Primer Leading Strand DNA Polymerase 5’5’ 5’ 3’ Lagging Strand 5’ 3’

47 Lagging Strand Segments  Okazaki Fragments - series of short segments on the lagging strand  Must be joined together by an enzyme Lagging Strand RNAPrimerDNAPolymerase 3’ 5’ Okazaki Fragment

48 Joining of Okazaki Fragments The enzyme Ligase joins the Okazaki fragments together to make one strand Lagging Strand Okazaki Fragment 2 DNA ligase Okazaki Fragment 1 5’ 3’

49 Replication of Strands Replication Fork Point of Origin

50 Proofreading New DNA DNA polymerase initially makes about 1 in 10,000 base pairing errors DNA polymerases proofread and correct these mistakes The new error rate for DNA that has been proofread is 1 in 1 billion base pairing errors

51 DNA Damage & Repair Chemicals & ultraviolet radiation damage the DNA in our body cells Cells must continuously repair DAMAGED DNA Excision repair occurs when any of over 50 repair enzymes remove damaged parts of DNA DNA polymerase and DNA ligase replace and bond the new nucleotides together

52 Fig. 16-18 Nuclease DNA polymerase DNA ligase

53 Replicating the Ends of DNA Molecules Limitations of DNA polymerase create problems for the linear DNA of eukaryotic chromosomes The usual replication machinery provides no way to complete the 5 ends, so repeated rounds of replication produce shorter DNA molecules Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

54 Fig. 16-19 Ends of parental DNA strands Leading strand Lagging strand Last fragment Previous fragment Parental strand RNA primer Removal of primers and replacement with DNA where a 3 end is available Second round of replication New leading strand New lagging strand Further rounds of replication Shorter and shorter daughter molecules 5 3 3 3 3 3 5 5 5 5

55 Fig. 16-15 Leading strand Overview Origin of replication Lagging strand Leading strandLagging strand Primer Overall directions of replication Origin of replication RNA primer “Sliding clamp” DNA poll III Parental DNA 5 3 3 3 3 5 5 5 5 5

56 Fig. 16-15a Overview Leading strand Lagging strand Origin of replication Primer Overall directions of replication

57 Fig. 16-15b Origin of replication RNA primer “Sliding clamp” DNA pol III Parental DNA 3 5 5 5 5 5 5 3 3 3

58 Fig. 16-16 Overview Origin of replication Leading strand Lagging strand Overall directions of replication Template strand RNA primer Okazaki fragment Overall direction of replication 1 2 3 2 1 1 1 1 2 2 5 1 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 3 3

59 Fig. 16-16a Overview Origin of replication Leading strand Lagging strand Overall directions of replication 1 2

60 Fig. 16-16b1 Template strand 5 5 3 3

61 Fig. 16-16b2 Template strand 5 5 3 3 RNA primer 3 5 5 3 1

62 Fig. 16-16b3 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment

63 Fig. 16-16b4 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5

64 Fig. 16-16b5 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5 1 2 3 3 5 5

65 Fig. 16-16b6 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5 1 2 3 3 5 5 1 2 5 5 3 3 Overall direction of replication

66 Fig. 16-17 Overview Origin of replication Leading strand Lagging strand Overall directions of replication Leading strand Lagging strand Helicase Parental DNA DNA pol III PrimerPrimase DNA ligase DNA pol III DNA pol I Single-strand binding protein 5 3 5 5 5 5 3 3 3 3 1 3 2 4

67 The DNA Replication Complex The proteins that participate in DNA replication form a large complex, a “DNA replication machine” The DNA replication machine is probably stationary during the replication process Recent studies support a model in which DNA polymerase molecules “reel in” parental DNA and “extrude” newly made daughter DNA molecules Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: DNA Replication Review Animation: DNA Replication Review

68 Eukaryotic chromosomal DNA molecules have at their ends nucleotide sequences called telomeres Telomeres do not prevent the shortening of DNA molecules, but they do postpone the erosion of genes near the ends of DNA molecules It has been proposed that the shortening of telomeres is connected to aging Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

69 Fig. 16-20 1 µm

70 If chromosomes of germ cells became shorter in every cell cycle, essential genes would eventually be missing from the gametes they produce An enzyme called telomerase catalyzes the lengthening of telomeres in germ cells Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

71 The shortening of telomeres might protect cells from cancerous growth by limiting the number of cell divisions There is evidence of telomerase activity in cancer cells, which may allow cancer cells to persist Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

72 Concept 16.3 A chromosome consists of a DNA molecule packed together with proteins The bacterial chromosome is a double- stranded, circular DNA molecule associated with a small amount of protein Eukaryotic chromosomes have linear DNA molecules associated with a large amount of protein In a bacterium, the DNA is “supercoiled” and found in a region of the cell called the nucleoid Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

73 Chromatin is a complex of DNA and protein, and is found in the nucleus of eukaryotic cells Histones are proteins that are responsible for the first level of DNA packing in chromatin Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: DNA Packing Animation: DNA Packing

74 Fig. 16-21a DNA double helix (2 nm in diameter) Nucleosome (10 nm in diameter) Histones Histone tail H1 DNA, the double helixHistones Nucleosomes, or “beads on a string” (10-nm fiber)

75 Fig. 16-21b 30-nm fiber Chromatid (700 nm) LoopsScaffold 300-nm fiber Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome

76 Chromatin is organized into fibers 10-nm fiber – DNA winds around histones to form nucleosome “beads” – Nucleosomes are strung together like beads on a string by linker DNA 30-nm fiber – Interactions between nucleosomes cause the thin fiber to coil or fold into this thicker fiber Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

77 300-nm fiber – The 30-nm fiber forms looped domains that attach to proteins Metaphase chromosome – The looped domains coil further – The width of a chromatid is 700 nm Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

78 Most chromatin is loosely packed in the nucleus during interphase and condenses prior to mitosis Loosely packed chromatin is called euchromatin During interphase a few regions of chromatin (centromeres and telomeres) are highly condensed into heterochromatin Dense packing of the heterochromatin makes it difficult for the cell to express genetic information coded in these regions Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

79 Histones can undergo chemical modifications that result in changes in chromatin organization – For example, phosphorylation of a specific amino acid on a histone tail affects chromosomal behavior during meiosis Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

80 Fig. 16-22 RESULTS Condensin and DNA (yellow) Outline of nucleus Condensin (green) DNA (red at periphery) Normal cell nucleus Mutant cell nucleus

81 You should now be able to: 1.Describe the contributions of the following people: Griffith; Avery, McCary, and MacLeod; Hershey and Chase; Chargaff; Watson and Crick; Franklin; Meselson and Stahl 2.Describe the structure of DNA 3.Describe the process of DNA replication; include the following terms: antiparallel structure, DNA polymerase, leading strand, lagging strand, Okazaki fragments, DNA ligase, primer, primase, helicase, topoisomerase, single-strand binding proteins Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

82 4.Describe the function of telomeres 5.Compare a bacterial chromosome and a eukaryotic chromosome Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings


Download ppt "Chapter 16 The Molecular Basis of Inheritance. DNA Structure Rosalind Franklin took diffraction x-ray photographs of DNA crystals In the 1950’s, Watson."

Similar presentations


Ads by Google