Presentation is loading. Please wait.

Presentation is loading. Please wait.

Overview and Device Physics

Similar presentations


Presentation on theme: "Overview and Device Physics"— Presentation transcript:

1 Overview and Device Physics
SOI Technology: Overview and Device Physics Jean-Pierre Colinge University of California Davis, CA, USA

2 Outline ◊ Introduction (Where SOI Technology stands today) ◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®) ◊ The “Classical” SOI MOSFET (Partially/Fully Depleted) ◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates) ◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

3 Outline ◊ Introduction (Where SOI Technology stands today) ◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®) ◊ The “Classical” SOI MOSFET (Partially/Fully Depleted) ◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates) ◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

4 MAINSTREAM

5 US Semiconductor Manufacturers Using SOI
IBM PD Microprocessor Motorola PD/FD Microprocessor AMD PD/FD Microprocessor TI PD Various HP PD Microprocessor Peregrine FD (SOS) RF, logic, EEPROM analog, Rad-hard Synova PD Rad-Hard Honeywell PD Hi-T°; Rad-hard Lincoln Lab FD Low-power, Rad-hard SOI news web site:

6 Advertisement page in USA Today, in Oct. 2000:
IBM uses SOI and copper for its top-of-line servers

7 G5 G4 * 0.1 mm process with initial G5 product * 2 GHz
* 0.15 mm copper process for initial G4 product (migrating to 1 GHz) * up to 1 GHz

8

9 Power PC Motorola IBM Honeywell
CLEARWATER, FLA. FEBRUARY 4, Honeywell Space Systems and Motorola Semiconductor Products Sector today announced a joint licensing agreement for PowerPC* technology for use in Honeywell space processors. The result will be a next generation space microprocessor which will be radiation hardened to withstand the destructive effects of space, will operate with Power PC software and use less power. Internally, Honeywell is referring to this next generation microprocessor as the Space Processor Chip (SpacePC). It combines the capabilities of the advanced Motorola PowerPC 603e microprocessor with Honeywell’s radiation and performance enhancing Silicon On Insulator (SOI) technology.

10 Outline ◊ Introduction (Where SOI Technology stands today) ◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®) ◊ The “Classical” SOI MOSFET (Partially/Fully Depleted) ◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates) ◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

11 Silicon on Sapphire

12 Silicon on Sapphire

13 SIMOX

14 SIMOX, circa 1985 SIMOX, 1998 SIMOX Silicon Silicon BOX BOX
1,000,000,000 dislocations/cm2 3,000 dislocations/cm2

15 Wafer Bonding and Etch Back

16 Wafer Bonding

17 Smart-Cut® / Unibond®

18 Outline ◊ Introduction (Where SOI Technology stands today) ◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®) ◊ The “Classical” SOI MOSFET (Partially/Fully Depleted) ◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates) ◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

19 MOSFETs Partially Depleted SOI Bulk Fully Depleted SOI Gate Oxide Gate
+ + N Source N Drain Depletion zone µm Buried oxide P- type silicon Bulk Fully Depleted SOI

20 Source and Drain Capacitance
10 -7 17 -3 Bulk, N B =10 cm + SOI, P drain on P-substrate, t =400 nm, N =10 15 cm -3 10 -8 BOX B Drain capacitance (F/cm2) + SOI, N drain on P-substrate, t =400 nm, N =10 15 cm -3 BOX B 10 -9 1 2 3 4 5 Supply voltage (V)

21 SOI MOSFET: a few definitions
V g1 V ds Gate t ox1 + + Source (N ) P Drain (N ) t FD: nm PD: nm s i t Buried oxide ox2 nm Back gate (mechanical substrate) V g2

22 Field Isolation LOCOS Possible Edge Leakage Mesa STI

23 Edge Leakage

24 Edge Leakage Elimination And Body Ties
A: Regular SOI MOSFET; B: Edgeless device Body ties in source A: Lateral body tie; B: H-gate body tie

25 SOI MOSFET: DIBL or: Drain-Induced Barrier Lowering
Electric field lines from the drain encroach on the channel region. Any increase of drain voltage decreases the threshold voltage (the “NPN” potential barrier between source and drain is lowered). E-field lines

26 SOI MOSFET PDSOI MOSFET FDSOI MOSFET OFFSPRING OFFSPRING
Pro: better VTH control Con: floating substrate effects Remedy: Body tie Pro: better electrical properties Con: worse VTH control* Remedy: Uniform SOI material OFFSPRING OFFSPRING Hybrid (DTMOS, MTCMOS) Double gate Multiple gate Buried ground plane electrode * s VTH < 9 mV in literature

27 PDSOI MOSFET Front Gate Source Drain Back Gate

28 PDSOI MOSFET: Kink Effect
Front Gate 1. Impact ionization 2. Hole injection in floating substrate 3. Forward bias diode 4. Increase of floating body potential 5. Reduces VTH 6. Increases current 1 2 Source Drain 3 4 Back Gate

29 PDSOI MOSFET: Kink Effect
Current is increased (GOOD!) Output conductance (or Early voltage) is very poor (BAD!) Drain Current Drain Voltage

30 SOI MOSFET: Single-Transistor Latchup
Front Gate Source Drain Back Gate Illustration of the single-transistor latch. "Normal" subthreshold slope at low drain voltage (a), infinite subthreshold slope and hysteresis (b), and device "latch-up" (c).

31 PDSOI MOSFET: floating-body effects
Front Gate 250 ms VG Source Drain ID Floating body 20 ms VG Back Gate ID This is only one example among MANY!

32 MOSFET Equations: Body Factor
Non saturation: Saturation: Subthreshold swing: Gain (weak inversion): Gain (strong inversion):

33 Gate - Channel Coupling
Body factor: n = …1.5… in Bulk; n = … in FDSOI

34 -6 -7 -8 -9 -10 -11 -12

35 Microwave SOI MOSFETs Noise figure / SOI L V D I D f T f max
Associated gain material (µm) (V) (mA) (GHz) (GHz) (dB) at 2GHz BESOI 1 - - - 14 5 / 6.4 SIMOX 1 - - - 11 5 / 4.4 SOS 0.35 3 10 23 56 - / - SIMOX 0.32 3 33 14 21 3 / 13.4 SIMOX 0.25 3 41 23.6 32 1.5 / 17.5 SIMOX 0.75 0.9 3 10 11 1.5 / 9 SIMOX 0.75 0.9 10 12.9 30 - / 13.9 (10.4¥) SIMOX 0.3 2 - - 24.3 0.9 / 14 SOS* 0.5 2 2 26 60 1.7 / 16.3 SIMOX 0.2 2 46 1/15.3 SIMOX 0.07 1.5 5 150 Unibond 0.25 1.5 50 75 (*) Metal-gate technology is used; (†) at 3 GHz and (¥) at 5 GHz.

36 Rather unsophisticated device: tox = 30 nm …

37 Outline ◊ Introduction (Where SOI Technology stands today) ◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®) ◊ The “Classical” SOI MOSFET (Partially/Fully Depleted) ◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates) ◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

38 aka DTMOS (Dual-Threshold MOS) aka MTCMOS (Multiple-Threshold CMOS)
Hybrid bipolar-MOS aka DTMOS (Dual-Threshold MOS) aka MTCMOS (Multiple-Threshold CMOS)

39 Leff,N = 0.45 mm, Leff,P = 0.58 mm (1987) Leff,N = Leff,P = 0.3 mm (1994)

40 (Double-Gate MOSFET)

41 Double-Gate SOI MOSFET:
Volume Inversion

42 20°C P-channel N-channel 300°C 300°C 200°C 200°C W = L = 3µm

43 Ground Plane SOI MOSFET
E-field lines E-field lines "The ground-plane concept for the reduction of short-channel effects in fully depleted SOI devices", Ernst, T., and Cristoloveanu, S., Electrochemical Society Proceedings 99-3, p. 329, 1999

44 Ground-Plane SOI MOSFET
P+ implanted ground plane (in Si wafer)

45 Ground-Plane SOI MOSFET
Equipotentials (Regular SOI MOSFET) Equipotentials (Ground-Plane SOI MOSFET)

46 Regular FD SOI vs. Ground-Plane FD SOI
SOI MOSFET Regular SOI MOSFET Ground-Plane SOI MOSFET Ground-Plane SOI MOSFET

47 Double-Gate SOI MOSFET
E-field lines E-field lines J.P. Colinge, M.H. Gao, A. Romano, H. Maes and C. Claeys, Technical Digest of IEDM, p. 595, 1990

48 Multiple-Gate SOI MOSFETsc
Different gate configurations for SOI devices: 1) single gate; 2) double gate; 3) triple gate; 4) quadruple gate (or: gate-all-around structure); 5) ∏-gate MOSFET.

49 Multiple-Gate SOI MOSFETsc
n g t h ( n m ) DIBL in fully depleted SOI MOSFETs with different gate structures and different effective gate lengths. VDS = 100 mV.

50 Outline ◊ Introduction (Where SOI Technology stands today) ◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®) ◊ The “Classical” SOI MOSFET (Partially/Fully Depleted) ◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates) ◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

51

52

53 PD FD FD hybrid FD hybrid FD PD FD

54

55 DRAMs DRAMs ´ Storage capacitance can be reduced 2-3
* Much lower rate of soft errors * Less junction leakage * Reduced bit line capacitance * Higher pass-transistor transfer efficiency Storage capacitance can be reduced 2-3 Supply voltage can be reduced below 1 V

56

57

58 Conclusion SOI now used in commercial products PD and FD SOI MOSFET physics Advanced SOI MOSFET structures


Download ppt "Overview and Device Physics"

Similar presentations


Ads by Google