Presentation is loading. Please wait.

Presentation is loading. Please wait.

Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, Shear banding in granular materials Stefan Luding.

Similar presentations


Presentation on theme: "Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, Shear banding in granular materials Stefan Luding."— Presentation transcript:

1 Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl Shear banding in granular materials Stefan Luding PART/DCT, TUDelft, NL Thanks to: M. Lätzel, M.-K. Müller (Stuttgart), R. P. Behringer, J. Geng, D. Howell (Duke), M. van Hecke, D. Fenistein (Leiden)

2 Introduction Results DEM Micro-Macro (global) Micro-Macro (local) Outlook - Anisotropy - Rotations Single particle Contacts Many particle simulation Continuum Theory Contents

3 Single particle Contacts Many particle simulation Continuum Theory Contents E x p e r i m e n t s Introduction Results DEM Micro-Macro (global) Micro-Macro (local) Outlook - Anisotropy - Rotations

4 Material behavior of granular media Non-Newtonian Flow behavior under slow shear inhomogeneityrotations Yield-surface Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl

5 Material behavior of granular media 3D 3-dimensional modeling of shear and sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl P-wave shape and speed Universal shear zones

6 Sound propagation in granular media 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl P-wave shape and speed

7 Applications Granular media (powder, sand, …) Colloidal systems (+fluid) Atomistic systems in confined geometries Many particle systems (traffic, pedestrians) Industrial scale applications ?

8 Why ? `Many particle simulations work for small systems only (10 4 - 10 6 ) Industrial scale applications rely on FEM FEM relies on continuum mechanics + constitutive relations `Micro-macro can provide those ! Homogenization/Averaging

9 Introduction Results DEM Contacts Many particle simulation Contents

10 Equations of motion Overlap Forces and torques: Normal Contacts Many particle simulation Discrete particle model

11 Contact force measurement (PIA)

12 Hysteresis (plastic deformation)

13 - (too) simple - piecewise linear - easy to implement Contact model

14 - (really too) simple - linear - very easy to implement Linear Contact model

15 - simple - non-linear - easy to implement Hertz Contact model

16 Sound Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl

17 Sound 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl P-wave shape and speed

18 potential energyrotationsdisplacements Micro simulation of shear bands

19 Strain Control (top): Initial position and final position z 0 and z f Stress-control (right): With wall mass: m x, friction x and (i)Bulk material force F x (t) (ii)External force –p x z(t), and (iii)Frictional force x x(t) Model system bi-axial box

20 zz =9.1% zz =4.2% zz =1.1% zz =0.0% Simulation results

21 Bi-axial box

22

23 Introduction Results DEM Micro-macro (global) Contacts Many particle simulation Continuum Theory Contents

24 Bi-axial compression with p x =const.

25 geometrical friction angle kc/k20½124kc/k20½124 p x 100 zz 183 234 264 310 336 p x 500 zz 798 853 915 941 972 c 11 32 40 60 71 f min macro cohesion Cohesion – no friction

26 Sliding contact points: - Static Coulomb friction - Dynamic Coulomb friction Tangential contact model

27 - Static friction - Dynamic friction project into tangential plane compute test force sticking: sliding: Tangential contact model - spring - dashpot before contact static dynamic static

28 k c = 0 and µ = 0.5 Internal friction angle Total friction angle Friction – no cohesion

29 Bi-axial box rotations

30 Direction, amplitude, anti-symmetric (!) stress Rotations (local)

31 Rolling (mimic roughness or steady contact necks) - Static rolling resistance - Dynamic resistance Tangential contact model

32 Silo Flow with friction +rolling friction

33 Silo Flow with friction

34 Tangential contact model Torsion (large contact area) - Static torsion resistance - Dynamic resistance

35 DEM simulation macroscopic material behaviour Micro: Disks (in 2-D) Particle size a = [0.5 : 1.5] mm Stiffness k 2 = 10 5 Nm -1 and k 1 =k 2 /2 Cohesion k c = 0, ½, 1, 2, 4 k 2 Friction µ = 0 Macro: Youngs Modulus E k 1 Poisson ratio 0.66 Friction angle 13° (µ=0) and 31° (µ=0.5) Dilatancy angle 5° (p=500) and 11° (p=100) Cohesion: + Bi-axial box setup Summary: micro-macro (global)

36 An-isotropy

37 Stiffness tensor vertical horizontal shear anisotropy

38 An-isotropy Structure changes with deformation Different stiffness: More stiff against shear Less stiff perpendicular Evolution with time:

39 Stiffness tensor vertical horizontal shear shear1 shear2 shear3

40 From virtual work … For each single contact … Þ Stress tensor Þ Stiffness matrix C (elastic) - Normal contacts - Tangential springs Deformations (2D): - Isotropic compression V - Deviatoric strain (=shear) D, Þ Stress changes - Isotropic V - Deviatoric D, Local micro-macro transition

41 Constitutive model with rotations

42 + successful tool – few parameters - microscopic foundations ? - extensions & parameter identification Continuum Theory deformation - rotations cyclic deformations - creep Hypoplastic FEM model

43 density vs. pressure & friction vs. density Micro-macro transition

44 Granular media are: - compressible - inhomogeneous (force-chains) - (almost always) an-isotropic and - micro-polar (rotations) Summary – part 1: global view

45 Introduction Results Micro-macro (global) Micro-macro (local) Single particle Contacts Many particle simulation Continuum Theory Contents

46 Global average vs. Local average Global + Experimentally accessible data - Wall effects - Averaging over inhomogeneities Local - Difficult to compare to experiment + Averages away from the walls + Average over `similar volume elements

47 potential energyrotationsdisplacements Micro informations: shear bands

48 Direction, amplitude, anti-symmetric (!) stress Rotations (local)

49 Ring geometry (Behringer et al.)

50 Ring geometry

51 2D shear cell – energy

52 2D shear cell – force chains

53 2D shear cell – shear band

54 Ring geometry

55

56 Averaging Formalism Any quantity: In averaging volume:

57 Averaging Formalism Any quantity: - Scalar - Vector - Tensor

58 Averaging Density Any quantity: - Scalar: Density/volume fraction

59 Density profile Global volume fraction

60 Any quantity: - Scalar - Vector – velocity density Averaging Velocity

61 Velocity field exponential

62 Velocity gradient exponential:

63 Velocity gradient exponential:

64 Velocity distribution

65 Averaging Fabric Any quantity: - Scalar: contacts - Vector: normal - Contact distribution

66 Fabric tensor contact probability … centerwall

67 Fabric tensor (trace) contact number density

68 Macro (contact density)

69 Fabric tensor (deviator) an-isotropy (!)

70 Averaging Stress Any quantity: - Scalar - Vector - Tensor: Stress

71 Stress tensor (static) shear stress

72 Stress tensor (dynamic) exponential

73 Stress equilibrium (1) acceleration:

74 Stress equilibrium (2) ? ?

75 Averaging Deformations Deformation: - Scalar - Vector - Tensor: Deformation

76 Macro (bulk modulus)

77 Macro (shear modulus)

78 Constitutive model – no rotations

79 Averaging Rotations Deformation: - Scalar - Vector: Spin density - Tensor

80 Rotations – spin density eigen-rotation:

81 Spin distribution

82 Velocity-spin distribution high dens.low dens. sim. exp.

83 Macro (torque stiffness)

84 Deformations (2D): - Isotropic V - Deviatoric (=shear) D, - Mean rotation (=slip) * - Difference rot. (=rolling) ** Þ Stress changes ??? - Isotropic V - Deviatoric D, - Asymmetric A An-isotropy and rotations

85 Constitutive model with rotations

86 Granular media are: - compressible - inhomogeneous (force-chains) - (almost always) an-isotropic - micro-polar (rotations) Summary Granular media are … … interesting

87 Open issues Accounting for inhomogeneities (temperature) Structure evolution with deformation (time) Micropolar continuum theory …

88 The End

89

90 Contact force measurement (PIA)

91 Hysteresis (plastic deformation)

92 - (too) simple - piecewise linear - easy to implement Contact model

93 - (really too) simple - linear - very easy to implement Linear Contact model

94 - simple - non-linear - easy to implement Hertz Contact model

95 Sound Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl

96 Sound 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl P-wave shape and speed

97 Sliding contact points: - Static Coulomb friction - Dynamic Coulomb friction Tangential contact model

98 - Static friction - Dynamic friction project into tangential plane compute test force sticking: sliding: Tangential contact model - spring - dashpot before contact static dynamic static

99 Bi-axial box rotations

100 Direction, amplitude, anti-symmetric (!) stress Rotations (local)

101 Rolling (mimic roughness or steady contact necks) - Static rolling resistance - Dynamic resistance Tangential contact model

102 Silo Flow with friction +rolling friction

103 Silo Flow with friction

104 Tangential contact model Torsion (large contact area) - Static torsion resistance - Dynamic resistance

105

106 + successful tool – few parameters - microscopic foundations ? - extensions & parameter identification Continuum Theory deformation - rotations cyclic deformations - creep Hypoplastic FEM model

107 density vs. pressure & friction vs. density Micro-macro transition

108 From virtual work … For each single contact … Þ Stress tensor Þ Stiffness matrix C (elastic) - Normal contacts - Tangential springs Deformations (2D): - Isotropic compression V - Deviatoric strain (=shear) D, Þ Stress changes - Isotropic V - Deviatoric D, Local micro-macro transition

109

110

111 page with logo


Download ppt "Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, Shear banding in granular materials Stefan Luding."

Similar presentations


Ads by Google