Download presentation

Presentation is loading. Please wait.

Published byJamel Turk Modified over 5 years ago

1
Stress and Deformation: Part II (D&R, 304-319; 126-149) 1. Anderson's Theory of Faulting 2. Rheology (mechanical behavior of rocks) - Elastic: Hooke's Law - Plastic - Viscous 3. Brittle-Ductile transition

2
Rocks in the crust are generally in a state of compressive stress Based on Coulomb's Law of Failure, at what angle would you expect faults to form with respect to 1?

3
c = critical shear stress required for failure 0 = cohesive strength tan = coefficient of internal friction N = normal stress Recall Coulomb's Law of Failure In compression, what is the observed angle between the fracture surface and 1 ( )? ~30 degrees!

4
Anderson's Theory of Faulting The Earth's surface is a free surface (contact between rock and atmosphere), and cannot be subject to shear stress. As the principal stress directions are directions of zero shear stress, they must be parallel (2 of them) and perpendicular (1 of them) to the Earth's surface. Combined with an angle of failure of 30 degrees from 1, this gives:

6
conjugate normal faults

7
conjugate thrust faults

9
A closer look at rock rheology (mechanical behavior of rocks) Elastic strain: deformation is recoverable instantaneously on removal of stress – like a spring

10
An isotropic, homogeneous elastic material follows Hooke's Law Hooke's Law: = Ee E (Young's Modulus): measure of material "stiffness"; determined by experiment

11
Elastic limit: no longer a linear relationship between stress and strain- rock behaves in a different manner Yield strength: The differential stress at which the rock is no longer behaving in an elastic fashion

12
Mechanics of faulting

13
What happens at higher confining pressure and higher differential stress? Plastic behavior produces an irreversible change in shape as a result of rearranging chemical bonds in the crystal lattice- without failure! Ductile rocks are rocks that undergo a lot of plastic deformation E.g., Soda can rings!

14
Ideal plastic behavior

15
Strength increases with confining pressure

16
Strength decreases with increasing fluid pressure

17
Strength increases with increasing strain rate

18
Role of lithology ( rock type) in strength and ductility (in brittle regime; upper crust)

19
Role of lithology in strength and ductility (in ductile regime; deeper crust) STRONG ultramafic and mafic rocks granites schist dolomite limestone quartzite WEAK

20
Temperature decreases strength

21
Viscous (fluid) behavior Rocks can flow like fluids!

22
For an ideal Newtonian fluid: differential stress = viscosity X strain rate viscosity: measure of resistance to flow

23
The brittle-ductile transition

24
The implications Earthquakes no deeper than transition Lower crust can flow!!! Lower crust decoupled from upper crust

25
Important terminology/concepts Anderson's theory of faulting significance of conjugate faults rheology elastic behavior Hooke's Law Young's modulus Poisson's ratio brittle behavior elastic limit yield strength plastic behavior (ideal) power law creep strain hardening and softening factors controlling strength of rocks brittle-ductile transition viscous behavior ideal Newtonian fluid

Similar presentations

© 2020 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google