Download presentation

Presentation is loading. Please wait.

Published byLesley Webster Modified over 4 years ago

1
BPS - 3rd Ed. Chapter 41 Scatterplots and Correlation

2
BPS - 3rd Ed. Chapter 42 Explanatory and Response Variables u Interested in studying the relationship between two variables by measuring both variables on the same individuals. –a response variable measures an outcome of a study –an explanatory variable explains or influences changes in a response variable –sometimes there is no distinction

3
BPS - 3rd Ed. Chapter 43 Question In a study to determine whether surgery or chemotherapy results in higher survival rates for a certain type of cancer, whether or not the patient survived is one variable, and whether they received surgery or chemotherapy is the other. Which is the explanatory variable and which is the response variable?

4
BPS - 3rd Ed. Chapter 44 u Graphs the relationship between two quantitative (numerical) variables measured on the same individuals. u If a distinction exists, plot the explanatory variable on the horizontal (x) axis and plot the response variable on the vertical (y) axis. Scatterplot

5
BPS - 3rd Ed. Chapter 45 Relationship between mean SAT verbal score and percent of high school grads taking SAT Scatterplot

6
BPS - 3rd Ed. Chapter 46 Scatterplot To add a categorical variable, use a different plot color or symbol for each category Southern states highlighted

7
BPS - 3rd Ed. Chapter 47 u Look for overall pattern and deviations from this pattern u Describe pattern by form, direction, and strength of the relationship u Look for outliers Scatterplot

8
BPS - 3rd Ed. Chapter 48 Linear Relationship Some relationships are such that the points of a scatterplot tend to fall along a straight line -- linear relationship

9
BPS - 3rd Ed. Chapter 49 Direction u Positive association –above-average values of one variable tend to accompany above-average values of the other variable, and below-average values tend to occur together u Negative association –above-average values of one variable tend to accompany below-average values of the other variable, and vice versa

10
BPS - 3rd Ed. Chapter 410 Examples From a scatterplot of college students, there is a positive association between verbal SAT score and GPA. For used cars, there is a negative association between the age of the car and the selling price.

11
BPS - 3rd Ed. Chapter 411 Examples of Relationships

12
BPS - 3rd Ed. Chapter 412 Measuring Strength & Direction of a Linear Relationship u How closely does a non-horizontal straight line fit the points of a scatterplot? u The correlation coefficient (often referred to as just correlation): r –measure of the strength of the relationship: the stronger the relationship, the larger the magnitude of r. –measure of the direction of the relationship: positive r indicates a positive relationship, negative r indicates a negative relationship.

13
BPS - 3rd Ed. Chapter 413 Correlation Coefficient u special values for r : a perfect positive linear relationship would have r = +1 a perfect negative linear relationship would have r = -1 if there is no linear relationship, or if the scatterplot points are best fit by a horizontal line, then r = 0 Note: r must be between -1 and +1, inclusive u both variables must be quantitative; no distinction between response and explanatory variables u r has no units; does not change when measurement units are changed (ex: ft. or in.)

14
BPS - 3rd Ed. Chapter 414 Examples of Correlations

15
BPS - 3rd Ed. Chapter 415 Examples of Correlations u Husband’s versus Wife’s ages v r =.94 u Husband’s versus Wife’s heights v r =.36 u Professional Golfer’s Putting Success: Distance of putt in feet versus percent success v r = -.94

16
BPS - 3rd Ed. Chapter 416 Not all Relationships are Linear Miles per Gallon versus Speed u Linear relationship? u Correlation is close to zero.

17
BPS - 3rd Ed. Chapter 417 Not all Relationships are Linear Miles per Gallon versus Speed u Curved relationship. u Correlation is misleading.

18
BPS - 3rd Ed. Chapter 418 Problems with Correlations u Outliers can inflate or deflate correlations (see next slide) u Groups combined inappropriately may mask relationships (a third variable) –groups may have different relationships when separated

19
BPS - 3rd Ed. Chapter 419 Outliers and Correlation For each scatterplot above, how does the outlier affect the correlation? AB A: outlier decreases the correlation B: outlier increases the correlation

20
BPS - 3rd Ed. Chapter 420 Correlation Calculation u Suppose we have data on variables X and Y for n individuals: x 1, x 2, …, x n and y 1, y 2, …, y n u Each variable has a mean and std dev:

21
BPS - 3rd Ed. Chapter 421 Case Study Per Capita Gross Domestic Product and Average Life Expectancy for Countries in Western Europe

22
BPS - 3rd Ed. Chapter 422 Case Study CountryPer Capita GDP (x)Life Expectancy (y) Austria21.477.48 Belgium23.277.53 Finland20.077.32 France22.778.63 Germany20.877.17 Ireland18.676.39 Italy21.578.51 Netherlands22.078.15 Switzerland23.878.99 United Kingdom21.277.37

23
BPS - 3rd Ed. Chapter 423 Case Study xy 21.477.48-0.078-0.3450.027 23.277.531.097-0.282-0.309 20.077.32-0.992-0.5460.542 22.778.630.7701.1020.849 20.877.17-0.470-0.7350.345 18.676.39-1.906-1.7163.271 21.578.51-0.0130.951-0.012 22.078.150.3130.4980.156 23.878.991.4891.5552.315 21.277.37-0.209-0.4830.101 = 21.52 = 77.754 sum = 7.285 s x =1.532s y =0.795

24
BPS - 3rd Ed. Chapter 424 Case Study

Similar presentations

© 2020 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google