Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cell Increase and Decrease

Similar presentations


Presentation on theme: "Cell Increase and Decrease"— Presentation transcript:

1 Cell Increase and Decrease
Cell Increase and Decrease Cell division increases the number of somatic (body) cells Two parts of cell division: Mitosis (division of nucleus) Cytokinesis (division of cytoplasm) Apoptosis (cell death) decreases the number of cells.

2 Cell division occurs when:
Body growth Maintenance and repair Fighting infection Replacing worn/dead cells Apoptosis occurs when: Tail of tadpole disappears  frog Skin between human fingers and toes dies during development Both cell increase and apoptosis occur during normal development and growth – example of homeostasis.

3 The Cell Cycle An orderly sequence of events that occurs from the time a cell is first formed until it divides into two new cells.

4 Most of the cell cycle is spent in interphase:
G1 stage – cell growth, cell doubles its organelles (cell structures), prepares for DNA replication S stage – DNA replication occurs G2 stage – cell makes proteins needed for cell division Amount of time spent in interphase varies – average for adult mammals is 20 hours Nerve cells and muscle cells exit the cell cycle  G0 phase

5 Following interphase is the M stage, including mitosis and cytokinesis (definitions slide #1). During mitosis, two copies of DNA made during replication are separated, and become the nuclei of the two daughter cells – takes about 4 hours. The cell cycle ends when cytokinesis, the splitting of the cytoplasm, is complete.

6 Control of the cell cycle
Three checkpoints: During G1 prior to the S stage – if DNA is damaged, apoptosis occurs During G2 prior to the M stage – will not proceed if DNA is damaged or not copied During the M stage prior to the end of mitosis – if chromosomes are not properly aligned

7

8 Chromosome Structure In a non-dividing cell – genetic material is in the form of chromatin (DNA & protein) In a dividing cell, chromatin undergoes coiling to form chromosomes Proteins called histones package the DNA so it can fit into the nucleus (2 meters of DNA fit into nucleus that is 5 micrometers)

9

10

11 After replication, there are 2 identical sister chromatids, held together by a centromere

12 Each species has a set number of chromosomes: Humans – 46 Crayfish – 200 Corn – 20 Adder’s tongue fern – 1262 Chimpanzee - 48 Sand dollar – 52 Dog – 78 Cat - 32

13 Body cells contain the diploid (2n) number of chromosomes – 2 chromosomes of each kind (1 from each parent) Sex cells (eggs and sperm) contain only 1 chromosome of each kind – haploid (n) number of chromosomes

14 Mitosis – occurs in body cells – diploid cells divide to produce diploid cells – daughter cells are genetically identical to parent cells Animation of mitosis

15 Mitosis overview

16 Centriole Chromatin Nucleolus (in yellow) Nuclear membrane Spindle fibers Chromosome (replicated) Centromere Sister Chromatids (each half of replicated chromosomes) Daughter Chromosomes (once the replicated chromosome splits) Cell membrane Cleavage furrow Asters Centrosome (=aster + centriole)

17

18

19

20

21

22

23

24 Late Interphase Centrosomes (which contain pair of centrioles and an aster – which are short microtubules) duplicate Chromatin condenses into chromosomes

25 Early Prophase Chromosomes become visible Centrosomes move to opposite ends of the cell Nuclear membrane and nucleolus disappear

26 Late Prophase Spindle fibers form Chromosomes become attached to spindle fibers – centromere attaches to spindle fibers

27 Metaphase Chromosomes line up at metaphase plate – equidistant from poles

28 Anaphase Centromeres holding sister chromatids divide Sister chromatids separate, becoming daughter chromosomes, and move toward opposite ends of cell

29 Telophase Spindle disappears Nuclear membrane reappears Chromosomes turn into chromatin Nucleolus reappears

30 Mitosis in Plant Cells Same phases as in animal cells Have centrosome and spindle, but no centrioles or asters

31

32 Cytokinesis, or division of cytoplasm, accompanies mitosis.
Cleavage of the cytoplasm begins in anaphase, but is not completed until just before the next interphase. Newly-formed cells receive a share of organelles made during interphase. Division/Mitosis/Mitosis_Video_Quiz.asf

33 Cytokinesis in Animal Cells
A cleavage furrow (indentation of membrane where cell will divide) begins at the end of anaphase. A band of actin and myosin filaments, called the contractile ring, slowly forms a constriction between the two daughter cells. A narrow bridge between the two cells is apparent during telophase, then the contractile ring completes the division.

34 Cytokinesis in animal cells

35 Cytokinesis in Plant Cells
The rigid cell wall surrounding plant cells cannot form a cleavage furrow. Instead, a cell plate forms from vesicles released by the Golgi apparatus (a part of the cell that processes proteins) New plant cell walls form and are later strengthened by cellulose fibers.

36 Cytokinesis in plant cells

37 Cell Division in Prokaryotes
The process of asexual reproduction in prokaryotes is called binary fission. The two daughter cells are identical to the original parent cell, each with a single chromosome. Following DNA replication, the two resulting chromosomes separate as the cell elongates. Cell divides without cell structures seen in plants & animals

38 Animation of binary fission

39 Meiosis Produces sex cells (gametes) – eggs & sperm Reduces the chromosome number so that egg or sperm cells each have only one of each kind of chromosome (2n  1n). The process ensures that the next generation will have: the diploid number of chromosomes a combination of traits that differs from that of either parent.

40 Overview of meiosis

41

42

43

44

45 Meiosis involves two cell divisions and produces four haploid cells.
Humans have 23 pairs of homologous chromosomes (chromosomes with the same genes), or 46 chromosomes total. Prior to meiosis I, DNA replication occurs.

46 In many organisms, haploid daughter cells mature into gametes (sex cells – eggs and sperm)
Fertilization (fusion of egg and sperm) -restores the diploid number of chromosomes

47 Phases of Meiosis The same four phases seen in mitosis – prophase, metaphase, anaphase, and telophase – occur during both meiosis I and meiosis II. The period of time between meiosis I and meiosis II is called interkinesis. No replication of DNA occurs during interkinesis Animation Meiosis square dance

48 Meiosis I Prophase I Nuclear memebrane & nucleolus disappear Spindle forms Homologous chromosomes pair during synapsis Metaphase I Homologous chromosomes line up at metaphase plate

49

50 Anaphase I Homologous chromosomes separate & move to opposite poles Telophase I Nuclear membrane and nucleolus reappear Cytokinesis occurs Interkinesis Period of time between meiosis I and II

51

52 Meiosis II Prophase II Spindle reappears, nucleolus and nuclear membrane disappear Chromosomes attach to spindle Metaphase II Chromosomes line up at metaphase plate

53 Anaphase II Sister chromatids separate, becoming daughter chromosomes Telophase II Spindle disappears, nuclear membrane and nucleolus reappear Cytokinesis divides the cells

54

55 Genetic Recombination
Genetic variation occurs in several ways: Crossing-over of nonsister chromatids – occurs during prophase I

56 2) Independent assortment of homologous chromosomes – separate in a random manner – 223 or 8,388,608 possible combinations of the 23 pairs of chromosomes

57 Combining of chromosomes of genetically different gametes during fertilization
Between crossing over, combinations of gametes produced, and random combining of sperm and egg, variation is endless in the human population

58 Meiosis vs. Mitosis Mitosis
DNA replication occurs only once during interphase. One cell division Two diploid daughter cells – genetically identical to parent Meiosis DNA replication occurs only once during interphase. Two cell divisions. Four haploid daughter cells – genetically different from parent

59 Mitosis Daughter cells are identical to each other Occurs in all somatic cells for growth and repair Meiosis Daughter cells are different from each other Occurs only in the reproductive organs for the production of gametes

60

61

62 Meiosis compared to mitosis

63 The Human Life Cycle Requires both mitosis and meiosis. In males, meiosis occurs as spermatogenesis and produces 4 haploid sperm. In females, meiosis occurs as oogenesis and produces 1 egg cell. Mitosis is involved in the growth of a child and repair of tissues during life.

64 Life cycle of humans

65 Spermatogenesis Diploid primary spermatocytes undergo meiosis I to produce haploid secondary spermatocytes. Secondary spermatocytes divide by meiosis II to produce 4 haploid spermatids. Spermatids mature into sperm with 23 chromosomes.

66 Spermatogenesis

67 Oogenesis Diploid primary oocyte undergoes meiosis I to produce one haploid secondary oocyte and one haploid polar body. Secondary oocyte begins meiosis II, stops at metaphase II, and is released from the ovary. Meiosis II will be completed only if sperm are present. Following meiosis II, there is one haploid egg cell with 23 chromosomes and up to three polar bodies. Polar bodies serve as a dumping ground for extra chromosomes – will disintegrate.

68 Oogenesis

69 In humans, both sperm cells and the egg cell have 23 chromosomes each (1n)
Following fertilization of the egg cell by a single sperm, the zygote has 46 chromosomes, the diploid number (2n) found in human somatic cells. The 46 chromosomes represent 23 pairs of homologous chromosomes. Cell differentiation occurs during development resulting in a variety of cell types


Download ppt "Cell Increase and Decrease"

Similar presentations


Ads by Google