Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 8 – Visual Memory 1 Through associations between new material and familiar material. But how do we develop associations? In particular, do we.

Similar presentations


Presentation on theme: "Lecture 8 – Visual Memory 1 Through associations between new material and familiar material. But how do we develop associations? In particular, do we."— Presentation transcript:

1

2 Lecture 8 – Visual Memory 1 Through associations between new material and familiar material. But how do we develop associations? In particular, do we associate individual objects in the world with other individual objects? Or classes of objects with other classes? How is new learning influenced by WWAK?

3 Lecture 8 – Visual Memory 2 What do you think of when I say, “Cat?” Probably, “Dog.” But which dog? A specific image? Or a general image which captures some essential ‘dogness’? Example:

4 Lecture 8 – Visual Memory 3 Dog vs. Dogs In the next slide, notice that every dog is different in some way. They vary in colour, in posture, even in size a little bit. Yet, there is some general ‘dogness’ on display, as well. That suggests two ways we can represent things.

5 Lecture 8 – Visual Memory 4

6 Lecture 8 – Visual Memory 5 Two ways to represent things 1.As a specific object, with great detail Useful for controlling specific responses (e.g. picking up a given cup in a given location) Does not generalize well (e.g., handle on next cup may be thinner than handle on this cup) Store long enough to execute response.

7 Lecture 8 – Visual Memory 6 Two ways to represent things 2. As a general object, with less detail Contains the information that may be relevant in a similar but not identical situation E.g., are cups as delicate as soap bubbles? How do dogs behave when you reach for the milkbones? These we may store for years.

8 Lecture 8 – Visual Memory 7 Two ways to represent things Each of these ways has its own purpose. If you want to behave towards some object in the world, you need a detailed representation of that specific object – size, shape, location, texture… If you want to learn a lesson for future reference, you need a less detailed (visual) representation which generalizes better.

9 Lecture 8 – Visual Memory 8 Three levels of detail 1.Detailed current representation. 2.Stable aspects of a familiar situation (e.g., your living room). Abstract representation, less detail. 3. General aspects of visual form (e.g., what does a sofa look like – not your sofa, but sofas in general?). Least detailed

10 Lecture 8 – Visual Memory 9 Three levels of detail In what follows, I will make these points: Representations at different levels of detail vary in how much it is worth remembering them over the long term. With more general representations, we use imagery to improve memory either deliberately (mnemonics) or automatically (dual-coding).

11 Lecture 8 – Visual Memory 10 Three levels of detail and their role in memory 1.Detailed current representation Melcher (2001) Simons & Levin (1998) Standing (1973) 2a. Stable aspects of familiar situation Method of loci Nickerson & Adams (1979) 2b. General aspects of visual form Paivio’s Dual Code theory

12 Lecture 8 – Visual Memory 11 1. How much detail can we get into a stimulus representation? For a short time – a lot Melcher (2001) – memory for scenes accumulated over a series of brief views as though scene had never been out of sight. Effect did not build up across days Memory for detailed current stimulus

13 Lecture 8 – Visual Memory 12

14 Lecture 8 – Visual Memory 13

15 Lecture 8 – Visual Memory 14 Memory for detailed current stimulus Simons & Levin (1998) Change blindness – people don’t notice changes in visual scene after brief interruption (when the scene is of little importance) abstract expectations about a scene allow us to focus on some small part that we use to check for moment-to-moment consistency

16 Lecture 8 – Visual Memory 15 But what about Standing (1973)? Standing (1973): Good performance on recognition of 10,000 faces seen in photographs over several days Recognition tested with a set of several hundred of these photographs (plus foils) But did subjects store whole faces or just salient bits?

17 Lecture 8 – Visual Memory 16 What do these studies tell us? We store detailed information about a visual scene only on the scale of seconds/minutes (long enough to execute a response). We may store over a long period (e.g., days) just enough information to distinguish one scene from another. Don’t use these repns. for mnemonics.

18 Lecture 8 – Visual Memory 17 Memory for stable aspects of a situation Stable aspects of a situation worth remembering, because likely to occur again Because these aspects are well-learned, they can be used to form associations to new material. Method of loci associate to-be-learned material with familiar locations, such as rooms in your house.

19 Lecture 8 – Visual Memory 18 Memory for stable aspects of a situation However, stable aspects of a situation that never influence a response are not worth remembering. Nickerson & Adams (1979) US students were poor at discriminating line- drawing of real dime from fakes. How many maple leaves on a penny?

20 Lecture 8 – Visual Memory 19 What do these studies tell us? Some stable aspects of a situation are meaningful, and these are stored in LTM. Other aspects are not meaningful and these are not stored in LTM. Memories that we keep around in the long term can be used as the basis for associations in new learning (e.g., through method of loci).

21 Lecture 8 – Visual Memory 20 General aspects of visual form The most abstract forms are the most general – they have the least detail in them, so apply most widely to new situations. Because they are general, such forms are highly overlearned (frequently experienced). Because they are overlearned, such forms can help us remember experiences, even when we don’t deliberately use mnemonics.

22 Lecture 8 – Visual Memory 21 General aspects of visual form Paivio’s Dual Code theory: Least-detailed representation of any object, situation, or event is a word that names it. For example, the word ‘dog’ captures that essential dogness without capturing any of the details that make a particular dog particular. Imageable words are more memorable than words that name non-imageable things

23 Lecture 8 – Visual Memory 22 Paivio’s Dual Code theory 1.Distinguish between high-imageability words and low-imageability words. High imageabilityLow imageability FiretruckDuty TreeIdea CakeTruth VolcanoLove

24 Lecture 8 – Visual Memory 23 Paivio’s Dual Code theory 2. Compare recall for high- vs. low-imageability words. Paivio, Smythe, & Yuille (1968) Cued recall. Cue & target varied in imageability. Recall was best when both were high, worst when both were low, intermediate for one of each.

25 Lecture 8 – Visual Memory 24 Paivio’s Dual Code theory In method of loci, there is no necessary connection between two associates (e.g., hamburger and bathroom). connection must be made explicitly In Paivio’s study, pre-existing associations (e.g., “tree” with image of tree) are used.

26 Lecture 8 – Visual Memory 25 Review – Memory for detailed representations contains significant detail supports responding in a dynamic world valid (accurate as a description of the world) only on the time scale of seconds or minutes memory persists for a short time only

27 Lecture 8 – Visual Memory 26 Memory for stable aspects of familiar situations contains less detail, but still distinguishes between individual objects/locations (e.g., my sofa and yours) supports activities that don’t require dynamic, constantly-updated information (e.g., planning routes). supports method of loci

28 Lecture 8 – Visual Memory 27 Review – Memory for general visual forms general visual forms are highly-overlearned. as a result, they make good associates for to- be-learned material. Paivio: imageable words more likely to be recalled, because automatically encoded using both verbal and image representations.


Download ppt "Lecture 8 – Visual Memory 1 Through associations between new material and familiar material. But how do we develop associations? In particular, do we."

Similar presentations


Ads by Google