Presentation is loading. Please wait.

Presentation is loading. Please wait.

The FVTX Technology Outline Overall Picture Silicon Detector

Similar presentations


Presentation on theme: "The FVTX Technology Outline Overall Picture Silicon Detector"— Presentation transcript:

1 The FVTX Technology Outline Overall Picture Silicon Detector
Geometry, Layout, Process Readout Chip FNAL Chips, New Chip PHX Detector Module Wedges, Lampshades Data Path FPGA Interface Board Concept, Potential Implementation Overview on R&D Issues Summary Gerd J. Kunde - LANL

2 FVTX Tracker Executive Summary
Four lampshade stations on each side Mini-strips of 50 micron radial pitch: mm Readout via new PHX chip from Fermi Nat’l Lab Total strip count: ~ 2 * 860,000 strips (zero suppressed) Total chip count: ~ 2 * 1680 chips Total silicon area: ~ 2 *3350 cm2 Gerd J. Kunde - LANL

3 The Inner Volume of Phenix
78 cm 66 cm 45 cm Mechanical Design for VTX and FVTX by LANL & Hytec Gerd J. Kunde - LANL

4 Current VTX & FVTX Specifications
Barrel Section i-radius length strips/pixel layer 1 2.5 cm 21.8 cm pixel layer 2 5 cm layer 3 10 cm 31.8 cm strip layer 4 14 cm 38.2 cm 1.2% 2.0% ministrip 18 cm 38 cm station 4 32 cm station 3 10.6cm 26 cm station 2 6.6 cm 20 cm station 1 tilt = 22 deg o-radius z-start(+-) Endcap (north and south) Rad. Length 1 % Gerd J. Kunde - LANL

5 FVTX Part of VERTEX Spreadsheet
Gerd J. Kunde - LANL

6 Silicon Detector Technical Overview
200 micron thickness 50 micron radial pitch (z reconstruction) curved or straight strips ? (R&D) 1280,2048,2816 “mini-strips” 3.5 cm < r < 18 cm < 1.5 % occupancy (central AA) 48 “double towers” in phi mini-strips from 13.0 mm to 2.2 mm readout via PHX 5,8,11 chip row r = 18.0 cm 2816 2048 1280 r = 3.5 cm 1 PHX derived from FNAL chips Gerd J. Kunde - LANL

7 Only “2 ½” Silicon Detector types
50 micron strips (collaboration with Prague groups) Outside Detector (II) Inside Detector (I) Outside Detector (III) 5 chips= 1280 * 2 strips 706.2 mm^2 6 chips= 1536 * 2 strips mm^2 3 chips= 768 * 2 strips 752.0 mm^2 Gerd J. Kunde - LANL

8 Two Silicon Wafer Layout Concepts
n+ pixels on n substrate using “moderated p-spray” as the n-isolation technology Proven ATLAS/BTev technology with existing qualified vendors We assume 4 inch um wafers, the layout is matching the need of inner and outer detectors: Inner: 77 wafers + contingency Outer: 96 wafers + contingency Gerd J. Kunde - LANL

9 Silicon Sensor Schedule
Gerd J. Kunde - LANL

10 Existing FNAL Chip: FPIX2.1 Features
Advanced mixed analog/digital design 128 rows x 22 columns (2816 channels) 50 µm x 400 µm pixels High speed readout intended for use in Level 1 trigger. Up to 840 Mbits/sec data output. Very low noise, excellent threshold matching DC coupled input Fully programmable device Output directly drives long cable (10 m, 30 feet) 90 mirco watt/pixel (~0.25 watt/chip) Rad hard to 50 Mrads Change geometry for PHX-chip and adjust analog front end to mini-strips capacity Gerd J. Kunde - LANL

11 FPIX 2.1 Pixel Circuit (50 x 400 µm)
FPIX2: 60 e-rms measured c=0 pf 3 bit ADC Signal/Noise ~ 50/1 Threshold/Noise ~ 10/1 for mini-strips on 200 um Si PHX Simulation 2 mm to 10 mm strip length Gerd J. Kunde - LANL

12 FPIX 2 Module: “Real” Threshold and Noise
CHIP 4 CHIP 4 These are typical distribution curves for threshold and noise for a real chip on an 8 chip HDI. (A mip gives 16,000 electrons in 200 micron) Gerd J. Kunde - LANL

13 Measured FPIX 2 Power Consumption
The power consumption of the 8 chip module is: for (VD=VA=2.5V) 1.86W Module idle. 2.26W Module collecting data.*  100 micro watt/channel for (VD=VA=2.2V) 1.51W Module idle. 1.83W Module collecting data.*  80 micro watt/channel * 8 chip module collecting data at 300Mbps. The power consumption variation due temperature change (delta=100ºC) was less than 0.05 W. Gerd J. Kunde - LANL

14 512 bumps plus inter-chip bumps ~ 15 wafers needed
signals & power FNAL Collaboration Ray Yarema’s group Bump bonds Programming interface Discriminator Pipeline Digital interface PHX Chip Layout: 2 columns 256 channels/column 3.8 mm x 13 mm = 49.4 mm2 Thinned to 150 to 200 um Bump bonds on 200 um pitch 50 µm dia solder bumps 512 bumps plus inter-chip bumps ~ 15 wafers needed Keep all digital backend the same ! Adjust only input and geometry, optimize the row/column structure for readout speed and add pulser. Bus on chip ? Gerd J. Kunde - LANL

15 PHX Bus R&D FNAL Proposal: Power & Data Bus on Chip PHX PHX
Kapton FNAL Proposal: Power & Data Bus on Chip Kapton PHX PHX 200 um Silicon Detector Preliminary calculations by R.Yarema show that the I-R loss is acceptable, need optimize number of signal lines per chip R&D necessary …. fallback solution is Flex Cable with Wire Bonding Gerd J. Kunde - LANL

16 ~3400 chips but only 80 Watts per Endcap
FVTX Power Numbers added for both sides ! ~3400 chips but only 80 Watts per Endcap Gerd J. Kunde - LANL

17 PHX Chip Development Schedule
Gerd J. Kunde - LANL

18 FVTX Wedge Assembly 2 silicons in front
3 mm carbon wedge for assembly and cooling 2 silicons in back Eliminate dead silicon areas by overlapping 1 mm along edges …. Carbon Fiber Support and Cooling Gerd J. Kunde - LANL

19 From Wedges to Lampshades
X 24 Total strip count: ~ 2 * 860,000 strips Total chip count: ~ 2 * chips Total silicon area: ~ 2 * cm2 Gerd J. Kunde - LANL

20 FVTX Connections Copper Flex (Fiber)
5 x 512 channels Fiber 4 Gbit/s Slow Control ~100 Hz Serializer Optical Driver 48 per station 48 per station Copper Cables Copper Bus 61 LVDS Pairs LVDS 4 x MBit Hit: 9 bit address ,3 bit adc, 4 bit chip-id, tag 8bit => 24 bits 6 x 512 channels 5 x 512 channels R&D Project: Flex Cables or Fiber to the ‘outside world’ ? Space Constraints (see W.Sondheim) Costs/Complexity/Reliability Serializer/Fiber Collaboration ? Gerd J. Kunde - LANL

21 FVTX Copper Connection Wire Count
D.Christian Slide FVTX Copper Connection Wire Count Per wedge: 6x2=12 wires BCO clock Shift In Shift Out Shift Control Reset MC Per chip: Data out (x1,2,4,6) DLCLK 11 chips/wedge… assume we use DLCLK: 1 serial pair/chip: 6 pairs+11x2 pairs = 28 pairs 2 serial pairs/chip: 6 pairs + 11x3 pairs = 39 pairs 4 serial pairs/chip: 6 pairs + 11x5 pairs = 61 pairs Power and Bias ‘Round Cable’ ala CDF/D0 Gerd J. Kunde - LANL

22 Board(green) and fiber optic connector(orange)
FVTX Connections III Board(green) and fiber optic connector(orange) 12 fibers per connector 160 mm 30mm 24 Fiber MPO Connector (x8) Samtech QSS-RA mm pitch Connector (7mmx54mm) R&D Project: Flex Cables or Fibers the ‘outside world’ ? Space Constraints (see W.Sondheim) Gerd J. Kunde - LANL

23 Electronics Readout Concept
Event Tag chip download Driver (buffer) FPGA PHENIX DCM Copper ~140 Mbits/s Data out <1.5 % Occupancy in AA central Level 1 possible fiber copper Level 1 Accept PHX/FPIX2 is zero suppressed !!! To Level 1 trigger processor T&FC Fvtx Interface Board Slow controls In Detector In Counting House Gerd J. Kunde - LANL

24 R&D on Data Acquisition
(Number of Readout Lines, Clock Speed & FPGA Memory) Layers Ganged channels/chip chips/ board channels/ board Occupancy Interactions/ 64 clocks Real Hits/ 64 Clocks Real data size/64 clocks (kbits) Noise Clocks Noise Hits/ 64 Clocks Noise data size/64 clocks (kbits) Buffer needed for 64 clocks (kbits) Number of Readout Lines Readout Time/data word (nsec) Readout Latency (beam clocks) Noise Hits/chip needed to Fall Behind Noise Rate/chip Readout Clock Speed (Mbps) 1 512 11 5632 0.015 84.48 2.03 0.001 64 360.4 8.7 10.7 212.4 17.4 0.5 113 4 44 22528 337.92 8.11 1441.8 34.6 42.7 2 106.2 0.9 35.3 2.9 2.8 169.8 6 35.4 R & D has started under LANL DR grant First FVTX readout meeting (Columbia/ISU/LANL) held 12/5/2005 at BNL Gerd J. Kunde - LANL

25 FVTX DAQ INTERFACE BOARD Conventional Copper Cable
Serial download to chips Pass beam clock Initialize/Reset Arcnet (FPGA program., chip download) T+FC On Silicon 11?, 41?/FPGA Trigger? Near Silicon Outside IR Conventional Copper Cable or Serializer/Optical Driver Data Buffer, FPGA Time to process=? DCM 2.5 Gb/s PHX 1,2,4,(6) lines/chip Stream of 24-bit data words with: Location (3 bit ADC) Beam Clock Counter 140Mbps readout lines can drive 10 m Uses custom or commercial driver Buffers Data Upon lvl1 grab relevant data Build packet DataDCM/Lvl1 Pass beam clock Initialize chips PHENIX Standard ISU Level 1 Board (SBIR) New development of FIB and firmware (Columbia/LANL) Gerd J. Kunde - LANL

26 The FIB Concept (FVTX Interface Board) (with input from Chi,FNAL + Columbia)
Gerd J. Kunde - LANL

27 FVTX Research & Development
Silicon Detector Adapt/modify existing design Straight or curved strips PHX Chip Low risk modification of existing design Analog input, row/column structure, pulser New development Bus on chip Interfacing Flex copper cables or Fibers R&D Transition Board FVTX Interface Board (FIB) and firmware DAQ/Slow Control Mechanics/Cooling integrated in VTX solution See W. Sondheim’s presentation Gerd J. Kunde - LANL

28 FVTX Summary North and South: 4 Station Precision Silicon Tracker for the Muon Arms BTeV (ATLAS) Technology for Detector and Readout Chip R&D Schedule (needs to start now) FVTX (DAQ) Interface Board with FPGA and Firmware R &D started under LANL grant Collaboration with Columbia/ISU Mechanics covered in next talk Detailed Schedule in Dave’s talk Gerd J. Kunde - LANL

29 BACKUP Slides on the FVTX
Gerd J. Kunde - LANL

30 FNAL Chip Comparison Chip All 50 µm spacing Noise Threshold σ
Ministrip Readout type speed Trigger possible Power per chan Geometry r-phi SVX4 128 ch S/N -12/1 yes Pipeline 53 MHz no 2mW FSSR 250 e 440 e Data push 840 Mb 3 mW Yes FPIX3 2816 ch 220 e 125 e Data Push 90 µW PHX 512 ch 125e Signal e for 300 µm Si Sensor, thinning desirable for small material budget Gerd J. Kunde - LANL

31 FPIX2.1 Pixel Cells 50 x 400 um Preamp 2nd stage +disc Kill/ inject
R.Yarema Slide FPIX2.1 Pixel Cells 50 x 400 um 12 µm bump pads Preamp 2nd stage +disc Kill/ inject ADC encoder Digital interface ADC Gerd J. Kunde - LANL

32 Power Considerations Must minimize IR drops
R.Yarema Slide Power Considerations Must minimize IR drops Reduce number of chips on bus Design full custom low power analog and digital sections Maximize power bus size on chip Use back side contact Possibly use cooling structure for ground return Gerd J. Kunde - LANL

33 Voltage Drop Estimation
R.Yarema Slide Voltage Drop Estimation Units are connected as shown Each unit consumes current What is the IR drop at the output of the last unit? n identical units Gerd J. Kunde - LANL

34 Runit Estimation (one chip is a unit)
R.Yarema Slide Runit Estimation (one chip is a unit) Gerd J. Kunde - LANL

35 FPIX2 uses 60mA of Analog Current and 60mA of Digital Current.
R.Yarema Slide Iunit Estimation FPIX2 uses 60mA of Analog Current and 60mA of Digital Current. It is fairly accurate to use the FPIX2 Analog Current as an estimation of the Phoenix Mini Strip Analog Current. It is conservative to use the FPIX2 Digital Current as an estimation of the Phoenix Mini Strip Digital Current Phenix Mini Strip will not read out at 840MBits/sec Phenix Mini Strip will not have as many inputs and outputs Gerd J. Kunde - LANL

36 R.Yarema Slide Iunit Estimation Gerd J. Kunde - LANL

37 ΔV Estimation Full Tower -OR- Split Tower Inner Segment Outer Segment
R.Yarema Slide ΔV Estimation Full Tower -OR- Split Tower Inner Segment Outer Segment Gerd J. Kunde - LANL

38 Noise Performance of FPIX2 at Higher Detector Capacitance
R.Yarema Slide Noise Performance of FPIX2 at Higher Detector Capacitance Gerd J. Kunde - LANL

39 Phenix Chip Analog Input Simulations
R.Yarema Slide Phenix Chip Analog Input Simulations Simulated FPIX2 first and second stage response for detector capacitances from 0 to 2 pF in 0.25 pF steps First stage Second stage Gerd J. Kunde - LANL

40 Phenix Chip Analog Simulations
R.Yarema Slide Phenix Chip Analog Simulations Simulated 1st and 2 nd stage risetime (10-90%) with different detector capacitance First stage Second stage Gerd J. Kunde - LANL

41 Phenix Chip I/O Ideas R.Yarema Slide
Separate analog and digital power buses Should operate over wide power supply range (due to IR drops) Common backside ground Clocks Input clock – 100 ns Separate readout clock? Serial programming interface input Serial data output Chip ID Cell number? Channel ID Trigger input Control line(s) Gerd J. Kunde - LANL

42 FPIX2 noise at C = 0 is about 60 erms
FPIX2 Threshold Cin= 0 pf is 125 erms R.Yarema Slide FPIX2 on the Bench Measurements FPIX2 noise at C = 0 is about 60 erms Gerd J. Kunde - LANL

43 Pixel/Strip Sizes and Capacity
R.Yarema Slide Pixel/Strip Sizes and Capacity FPIX 50 x 400 um Cin = .25 pF Phenix 50 x 2000 to um Cin = pF SVX 50 x 105 to 3x105 um Cin = pF Design for Phenix should be optimized for correct detector capacitance Gerd J. Kunde - LANL

44 First Simulations for PHX Chip at FNAL
R.Yarema Slide First Simulations for PHX Chip at FNAL First stage Second stage Simulated FPIX2 first and second stage response for detector capacitances from 0 to 2 pF in 0.25 pF steps Gerd J. Kunde - LANL

45 Possible Layout Diagram for PHX Chip
R.Yarema Slide Possible Layout Diagram for PHX Chip Bump bonds Programming interface 1st and 2nd stage and discriminator Pipeline Digital interface Gerd J. Kunde - LANL

46 BACKUP Slides on the iFVTX
Gerd J. Kunde - LANL

47 The Inclusive (Measurement ) FVTX aka iFVTX
sponsored by LANL-DR in FY ‘06-08 Inclusive Heavy Quark Measurement in A-A 4 planes Existing Chips FPIX 2.1 Existing 8 Chip Modules Prototype FPGA Readout Gerd J. Kunde - LANL

48 Aligned with Sweet Spot of Muon Half-Octant
iFVTX Aligned with Sweet Spot of Muon Half-Octant Constraints by barrel Same Volume as FVTX Enclosure Half-Octant Gerd J. Kunde - LANL

49 BTeV-Sensors at FNAL Each wafer contains: 1 “4-chip” module
G.Cardoso Slide BTeV-Sensors at FNAL Individual pixels are identical to ATLAS sensors. Number of rows & columns and overall size customized for BTeV. Oxygenated “moderated p-spray” n+-in-n sensors made by TESLA Each wafer contains: 1 “4-chip” module 3 “6-chip” modules 3 “5-chip” modules 2 “8-chip” modules These are the modules used in the baseline design; number on wafer chosen to reflect usage. 5 “1-chip” sensors Gerd J. Kunde - LANL

50 8 Chip Module HDI designed by Fermilab/CD made by Dyconex:
G.Cardoso Slide 8 Chip Module HDI designed by Fermilab/CD made by Dyconex: Dimensions: 111.0mm x 11.1mm + 2x 10.0mm x 11.1 mm tabs Line width: 50m Line to line clearance: 50m Metal layer thickness: 12m Number of layers: 4 Via pad/hole: 150/70m Lamination: 25m epoxy Film thickness (polymide): 50m HDI CAD top layer. HDI + 8 bare die chips. HDI + 8 chips with detector. (SINTEF PSPRAY) Gerd J. Kunde - LANL

51 G.Cardoso Slide LANL R&D Collaboration with FNAL to get Multichip Modules in January 2006 This is a photograph ! HDI TEST CARD 1 Silicon with 8 readout chips on HDI Silicon from TESLA (Czech Republic) Gerd J. Kunde - LANL

52 HDI to PIFC wire-bonding
G.Cardoso Slide HDI to PIFC wire-bonding 11.1mm 8.53mm 200um 1.47mm 1mm Data and control LV HV pad DVDD&GND AVDD&GND Power PIFC Data PIFC Gerd J. Kunde - LANL

53 BTeV Pixel - Flex Cross Section
G.Cardoso Slide BTeV Pixel - Flex Cross Section 4 Layer Flex Circuit Cross Section Silicon Sensor Adhesive Layer 3 Layer 2 Bias Window Gold Epoxy Metal Layer 4 Metal Layer 3 Metal Layer 2 Metal Layer 1 Analog Digital Digital lines Ground High Voltage Flex Circuit Analog lines Layer 1 Bias Pad (1mm 2 ) Gerd J. Kunde - LANL

54 Pixel Multichip Module – Baseline Design
G.Cardoso Slide Pixel Multichip Module – Baseline Design Gerd J. Kunde - LANL

55 Prototype pixel module
G.Cardoso Slide Prototype pixel module FPIX2 Silicon Sensor HDI Support Structure Wire bonds NOT TO SCALE Gerd J. Kunde - LANL

56 G.Cardoso Slide MODULE UNDER TEST Gerd J. Kunde - LANL

57 iFVTX plane with Twelve 8-Chip Modules
12/2005 iFVTX plane with Twelve 8-Chip Modules Cooling PCB VHDMSignals Power TPG FPIX on HDI Wire Bonds HV Bias Pulser Wire Bonded Flex Cable go to Pole Face Board Gerd J. Kunde - LANL

58 iFVTX Two Type of Planes
12 8-chip modules 8 8-chip modules Gerd J. Kunde - LANL

59 iFVTX 3-d Layout (concept)
Gerd J. Kunde - LANL

60 iFVTX Transition to the Outside World The Pole Face Board
Printed Circuit Board Feed through via multilayer board Flex Wire Bond Area Outside connectors Cables come for iFVTX planes to inside connectors Gerd J. Kunde - LANL

61 Test Setup at LANL we are working with a FNAL chip since July 2005
Chip Response LA Display Logic Analyzer DVM DAQ Low Voltage Invisible: Clean Power and Scope and Pulser Test Board Gerd J. Kunde - LANL

62 BACKUP Slides on the FSSR Hybrid
Gerd J. Kunde - LANL

63 Hybrid FSSR 40mm Pigtail solder pads Decoupling capacitors
G.Cardoso Slide Hybrid Prototype 4 layer FR4 board, ~ 1mm thick. Copper traces, 17um thick. 75um traces/spacing. Production 4 layer BeO board, ~ 500um thick. Gold traces, 10um thick. 75um traces/spacing. FSSR 40mm Pigtail solder pads Decoupling capacitors Termination resistors 75mm Gerd J. Kunde - LANL

64 Pigtail Connector Pigtail Pigtail Hybrid G.Cardoso Slide 3cm
Soldered to hybrid. Connects hybrid to flex cable. Avoids having a connector on hybrid. 2 layer, 100um traces/spacing, broadside coupled differential lines (LVDS). Pigtail Connector Pigtail Hybrid 3cm Gerd J. Kunde - LANL

65 Flex Cable ... 50cm G.Cardoso Slide Connects pigtail to Junction Card.
Length depends on station position. 2 layer, 100um traces/spacing, broadside coupled differential lines (LVDS). 50cm HV HV GND AGND DGND DVDD AVDD ... Differential pairs and sense wires NOT TO SCALE 1cm 2.5cm 0.5cm Gerd J. Kunde - LANL

66 G.Cardoso Slide Pitch Adapter Gerd J. Kunde - LANL


Download ppt "The FVTX Technology Outline Overall Picture Silicon Detector"

Similar presentations


Ads by Google