Presentation is loading. Please wait.

Presentation is loading. Please wait.

ENERGY. ENERGY CHART WORKPOWERENERGY DefinitionTransfer of energy Rate in which energy is being transferred The ability to do work Calculation Formula.

Similar presentations


Presentation on theme: "ENERGY. ENERGY CHART WORKPOWERENERGY DefinitionTransfer of energy Rate in which energy is being transferred The ability to do work Calculation Formula."— Presentation transcript:

1 ENERGY

2 ENERGY CHART WORKPOWERENERGY DefinitionTransfer of energy Rate in which energy is being transferred The ability to do work Calculation Formula Force X DistanceEnergy transferred Time Kinetic energy = ½ X Mass X Velosity² Gravitational Potential Energy = Weight X Height Units of MeasureNewton metersWattsJoule SymbolN · mWJ

3 WORK: When a force moves an object through a distance. The transfer of energy.

4 POWER The rate in which energy is transferred The amount of energy transferred in a unit of time

5 ENERGY The ability to do work Anytime work is being done on an object it gains energy.

6 VELOCITY Speed and direction of an object

7 newton The newton is the unit of force derived in the SI system It is equal to the amount of force required to give a mass of one kilogram an acceleration of one meter per second squared. Newton = Mass (kg) X the acceleration of gravity (9.8)

8 KINETIC ENERGY Energy of motion Increases as the mass increases Increases as the velocity increases

9 POTENTIAL ENERGY Stored energy Held in readiness Has the potential of doing work

10 Calculating Potential Energy Gravitational Potential Energy is the Potential Energy related to an objects height. Gravitational Potential Energy = Weight X Height

11 Elastic Potential Energy Potential Energy associated with objects that can be stretched. Example: An archer readying his bow and arrow.

12 CONVERTING MASS (kg) to newtons The average cell phone weighs.100 kg. How much does it weigh in newtons? MASS (kg) X 9.8 = newtons.100 kg X 9.8 =.98n

13 YOU TRY… An object has a mass of 3.8 kg. How much force does it have?

14 MASS (kg) x 9.8 (gravitational force) 3.8 kg X 9.8 (gravitational force) 37.24n

15 CALCULATING KENETIC ENERGY Kinetic Energy = ½ X Mass X Velocity²

16 An object has a mass of 5.7 kg is moving at 3.5 m/s. What is its KENETIC ENERGY? KE = ½ X MASS X VELOCITY² KE= ½ X (5.7 kg X 9.8) X (3.5 X 3.5) KE = ½ X 55.89 n X (3.5 X 3.5) KE = ½ X 55.89 n X 12.25 KE = 342.32 J

17 YOU TRY… An object with a mass of 11.12 kg is moving at 5.5 m/s. How much kinetic energy does it have? KE = ½ X MASS (n) X Velocity² KE= ½ X (11.12kg X 9.8) X 5.5² KE = ½ X 108.97n X 5.5² KE = ½ X 108.97 n X 30.25 m/s² KE = 1648.17 J

18 Potential Energy An object weighs 50 n and is sitting on a shelf 3.5 meters from the floor. What is its potential energy? PE = W X H PE = 50 n X 3.5 PE = 175 J

19 YOU TRY… An object is sitting on a brick wall at the height of 5.8 m. The mass of the object is 10.3kg. What is its POTENTIAL ENERGY? DID YOU REMEMBER TO CONVERT kg to n? PE = W X H PE = 100.94 n X 5.8 m PE = 585.45 J

20 INSTRUCTIONS #1: Fold a piece of paper in half 3 times hamburger style. Draw a roller coaster Number each area where the fold meets the coaster lines.

21 INSTRUCTIONS #2 Make the chart below in your folder KineticPotential 1 2 3 4 5 6 7

22 At each number describe whether the roller coasters KINETIC ENERGY is increasing or decreasing. Describe weather the potential energy is increasing or decreasing.

23 EXAMPLE #1 The average cell phone weighs.100 kg. How much does it weigh in newtons? Kinetic Energy =½ X.100 kg X 9.8 (force of gravity) Kinetic Energy = ½ X.98n Kenetic Energy =

24

25 EXAMPLE Wile E. Coyote is attempting to push a 50000 kg safe on the roadrunner below. How much KENETIC ENERGY will the street absorb?

26 USING THE FORMULA Kinetic Energy = ½ X Mass X Velocity ² ½ X 50000 kg X 9.8² ½ X 50000 kg X (9.8 X 9.8) ½ X 50000 kg X 96.04ms/s 2401000.0 n

27 CALCULATE WORK newton: unit of force based on the metric system It is the force that produces an acceleration of 1 meter per second per second when exerted on a mass of 1 kilogram. The newton is named for Sir Isaac Newton.

28 JOULE One joule is the work done, or energy expended. Can also be called a newton meter

29 FORMS OF ENERGY

30 MECHANICAL ENERGY Associated with the position and motion of an object. Objects in motion have mechanical energy only. ( A car racing down the road) Objects can have gravitational potential energy only. (A trophy sitting on the shelf) Sometimes objects can have both. (A football being thrown)

31 MECHANICAL ENERGY KINETIC ENERGY POTENTIAL ENERGY + / OR

32 KENETIC ENERGY Gravitational Potential Energy

33 MECHANICAL ENERGY = Potential Energy + Kinetic Energy

34 FORMS OF ENERGY THAT INVOLVE THE MOVEMENT OF PARTICLES TO SMALL TO SEE.

35 THERMAL ENERGY ALL OBJECTS ARE MADE UP OF PARTICLES CALLED ATOMS AND MOLECULES. ATOMS ARE IN CONSTANT MOTION, THEREFORE, THE FASTER THEY MOVE, THE MORE KINETIC ENERGY THEY HAVE.

36 THERMAL ENERGY IS THE TOTAL POTENTIAL AND KINETIC ENERGY OF THE PARTICLES IN AN OBJECT.

37 ELECTRICAL ENERGY ENERGY OF ELECTRICAL CHARGES Lightning has Kinetic Energy Batteries have Potential Energy

38 CHEMICAL ENERGY Chemical compounds are objects made up of two or more elements. – Salt ( Sodium + Chlorine) – Carbon Dioxide (Carbon + Oxygen)

39 Chemical energy hold these bonds together Chemical energy is stored in foods we eat, matches and cells in your body. When the bonds in the chemical compounds break, new chemical compounds may form and chemical energy may be released.

40 NUCLEAR ENERGY Potential Energy because it is stored in the NUCLEUS of the atom

41

42 Nuclear energy is released during a nuclear reaction – Nuclear fission occurs when the nucleus splits. Used in power plants to make electricity. – Nuclear Fusion occurs when the nuclei of atoms join together. Occurs in the sun.

43 ELECTROMAGNETIC ENERGY Example: Sunlight Travel in waves Have properties of both electrical properties and magnetic properties.

44 ENERGY TRANSFORMATION and CONSERVATION

45 ENERGY TRANSFORMATION A change from one form of energy to another. Most forms of energy can be transformed into other forms.

46

47

48

49

50

51 SINGLE TRANFORMATION Changing one form of energy to another. Toaster takes electrical energy and transfers it to thermal energy. As we eat food, chemical energy from the food is transferred to mechanical energy for us to do work. Electrical energy from the batteries inside our cell phones is transferred to electromagnetic energy for communication

52 MULTIPLE TRANSFORMATION

53 MECANICAL ENERGY TO THERMAL ENERGY

54 THERMAL ENERGY CAUSES A THE PARTICLES IN THE MATCH TO RELEASE THE STORED CHEMICAL ENERGY (phosphorous and a chlorate mix)

55 Chemical energy is turned into Electromagnetic energy (light)

56 TRANSFORMATIONS BETWEEN POTENTIAL AND KINETIC ENERGY

57 Potential Energy increases, Kinetic Energy decreases Highest potential Energy, no kinetic Energy Kinetic Energy increases, no potential energy

58 GREATEST POTENTIAL ENERGY Greatest Kinetic Energy, No Potential Energy

59 KINETIC ENERGY

60 KINETIC ENERGY to ELASTIC ENERGY

61 ELASTIC ENERGY TO POTENTIAL ENERGY

62 POTENTIAL ENERGY TO KINETIC ENERGY

63 LAW of CONSERVATION of ENERGY Energy cannot be created nor destroyed

64 ENERGY AND FRICTION Friction transfers mechanical energy to thermal energy No machine is 100% effective because some of its energy is transferred into thermal energy.

65 ENERGY AND MATTER Albert Einstein's theory of relativity states that energy can sometimes be created by destroying matter. By destroying just a small amount of matter releases huge amounts of energy.

66 THE TRANSFER OF HEAT

67 THERMAL ENERGY The total energy of all particles in an object The more particles an object has at a given temperature the more thermal energy it has. The higher the temperature, the higher the thermal energy it has.

68 HEAT The transfer of thermal energy from matter at higher temperatures to matter at a lower temperature.

69 http://www.learn360.com/ShowVideo.aspx ?TagName=conduction&ID=34162

70 Three ways heat can move Conduction Radiation Convection

71 CONDUCTION Transfer of heat from one particle of matter to another part without the movement of matter.

72 CONVECTION Transfer of heat through a current within a fluid. Convection currents are when warm air rises and the cool air flows into its place.

73 RADIATION Transfer of energy by electromagnet waves. Does not need matter to transfer heat.

74 HEAT FLOW Heat flows from a warm object to a cooler object When heat flows into matter, the thermal energy and the temperature of the matter increases. At the same time, the temperature of the matter loosing the heat decreases.

75

76 HOW DOES ICE CREAM GETS COLD? 1)The ingredients in the ice cream (milk and sugar) is not as cold as the ice cream itself. 2)Within the ice cream maker, a metal can packed with ice is used. 3)Ingredients turn colder because its thermal energy transfers to the colder ice filled can.

77 CONDUCTORS Materials that transfer energy well Depends of the density and how the particles are arranged. INSULATORS Materials that do not conduct heat well Examples: Wood, straw, wool and gasses. Clothes are not good conductors because they prevent the transfer of thermal energy.

78 ENERGY and FOSSIL FUELS

79 FORMATION of FOSSIL FUELS Fuel is a material that contains potential energy Some fuels used today are made from materials that formed hundreds of million years ago. Coal, petrolium and natural gasses are known as fossil fuels

80 FORMATION OF COAL Over time, plants and animals died Remains piled up in thick swamps and marshes Clay and sand covered them causing great pressures and temperatures Coal is formed

81 ENERGY FROM THE SUN Fuels do not create energy Fossil Fuels contain energy that came from the Sun. Suns electromagnetic energy transforms living things into chemical energy. As these animals and plants died their, chemical energy was trapped in the coal.

82 Use of Fossil Fuels Fossil fuels can be burned to release the chemical energy. The process of burning fuels is known as combustion Combustion is the transfer of energy from chemical energy to thermal energy.

83 USING FOSSIL FUELS Sun transforms nuclear energy to electromagnet energy

84 Ancient plants and animals transform electromagnet energy from the sun to stored energy. Their remains are coal.

85 Coal is burned to make steam, transforming stored chemical energy to thermal energy

86 The steam turns turbines, transforming thermal energy to mechanical energy.

87 The turbines spin electric generators, transforming mechanical energy to electrical energy

88 Your hair dryer transforms electrical energy to thermal energy

89 GRADE TIME (due today): Take EVERYTHING out of your notebooks Look for: – NOTES: What is Energy? (pg 442 – 446) – Section 1 Assessment page 446 – NOTES: Forms of Energy (pg 447 – 451) – Section 2 Assessment page 451 – NOTES: Energy Transformation Conservation (454 – 459) – Section 3 Assessment – NOTES: Transfer of Heat ( pg 479 – 483) – Section 4 Assessment page 495 – NOTES: Energy and Fossil Fuels (pg 462 – 465) – Section 4 Assessment page 465 – Workbook pages 265 - 278


Download ppt "ENERGY. ENERGY CHART WORKPOWERENERGY DefinitionTransfer of energy Rate in which energy is being transferred The ability to do work Calculation Formula."

Similar presentations


Ads by Google