Presentation is loading. Please wait.

Presentation is loading. Please wait.

Principles of Selecting and Mating Farm Animals (Chapter 9) Genetic improvement of farm animals –Involves selection (choosing the best to be parents) –Involves.

Similar presentations


Presentation on theme: "Principles of Selecting and Mating Farm Animals (Chapter 9) Genetic improvement of farm animals –Involves selection (choosing the best to be parents) –Involves."— Presentation transcript:

1 Principles of Selecting and Mating Farm Animals (Chapter 9) Genetic improvement of farm animals –Involves selection (choosing the best to be parents) –Involves mating systems (combining sires and dams to maximize efficiency)

2 Quantitative Inheritance Quantitative traits – traits that can be measured –Have continuous variation – any two values could have an intermediate value –Generally controlled by many gene pairs Qualitative traits – traits that can be classified –Frequently controlled by few gene pairs

3 Phenotypic Variation in Quantitative Traits Distribution of performance traits generally normal (bell curve) Majority of values near the mean Fewer values far away from the mean

4 Frequency of Genes in a Population Goal of genetic improvement –Increase frequency of desirable alleles (form of a gene) –Decrease frequency of undesirable alleles

5 Frequency of Genes in a Population Total NumberGenotypeRedWhite 49 redRR980 42 roanRW4242 9 whiteWW018 Total14060 Freq R = 140/200 =.7 Freq W = 60/200 =.3

6 Forces that Change Gene Frequency Mutation Migration Selection Genetic drift

7 Mutation Change in the base sequence Some mutations occur at regular frequency Mutation rate is low and regular change due to mutations is very small By chance, some mutations end up making a difference in livestock (dwarfism in beef cattle in the 1950s)

8 Migration Importing new genes into a population –Purchasing new sire –Opening up breed to new animals –Importing European breeds of cattle Very powerful force for changing gene frequency

9 Selection Choosing best young animals to be parents Eliminating inferior parents from population Progress is gradual but steady Should select on a balance of characteristics

10 Genetic Drift Change in gene frequency due to chance Each sperm and egg contains random sample of genes from parent Sample may be above or below average Some offspring better than average of parents Some offspring worse than average of parents

11 Phenotypic Variation Phenotype = Genotype + Environment Variance in phenotypes –Due to variance in genotypes and environments Environmental effects –Effects other than genetic effects

12 Genotype x Environment Interaction Differences between genotypes may not be constant in all environments Example –Brahman crosses superior to British crosses in southern states –British crosses superior to Brahman crosses in northern states

13 Heritability Proportion of phenotypic variation that is due to genetic variation Describes how easy to make progress through selection May be any value from 0 to 1 Usually between 0 and.60

14 Heritability Generally: Reproductive traits – low heritability (0-.2) Growth traits – moderate heritability (.2-.4) Carcass traits – high heritability (.4-.6) There are some exceptions to these generalizations

15 Selection with Different Types of Gene Action Effectiveness depends on whether gene action is additive or non-additive Additive –Easy to make selection improvement –Each gene has differential effect

16 Selection with Different Types of Gene Action Non- additive (dominance or epistasis) –Some alleles may mask other alleles –Some gene pairs may affect other gene pairs –Reduces effectiveness of selection –Selection may move toward some intermediate gene frequencies instead of 0 or 1

17 Progeny Testing for Recessive Alleles Important to identify carriers Mate suspected carrier to known carriers or to daughters If enough matings without affected offspring: –Can establish low probability that individual is a carrier

18 Gene Action with Heritability, Inbreeding and Heterosis Additive effects large –Heritability high, effect of inbreeding and heterosis low Non-additive effects large –Heritability low, effect in inbreeding and heterosis high

19 Selection of Superior Breeding Stock Selection on individual performance –If available – individual performance is single most important piece of information –Selection on individual performance most effective for traits with moderate to high heritability

20 Selection of Superior Breeding Stock Selection on performance of relatives –Sibs, progeny, pedigree, other collateral relatives –Useful especially for traits with low heritability –Some traits not measured on potential parent carcass traits traits measured in only one sex (eg milk)

21 Predicting Selection Response One generation of selection –Response = heritability x selection differential –Selection differential = difference between those selected to be parents and average of group –Selection differential larger for males smaller proportion of young males need to be kept

22 Predicting Selection Response For several years –Yearly selection response = heritability x selection differential generation interval –Generation interval average length of time to replace parents swine 2-3 years, cattle 4-6 years

23 Genetic Correlation Selection for one trait causes genetic change in another trait Caused by pleiotropy (genes that affect more than one trait)

24 National Performance Programs Was need for uniform performance information Dairy programs organized first Beef programs followed Swine and sheep programs came later

25 Dairy Cattle Performance Programs Dairy Herd Improvement Association Cooperative with United States Department of Agriculture Standardized lactation length for measuring milk production at 305 days Huge genetic increase in milk production in last 50 years

26 Beef Cattle Performance Programs Beef Improvement Federation “Guidelines for Uniform Beef Improvement Programs” Established standard recommendations for measuring growth, efficiency, reproduction, carcass traits

27 Swine Performance Programs National Swine Improvement Federation “Guidelines for Uniform Swine Improvement Programs” Established standard recommendations for measuring growth, efficiency, reproduction, carcass traits Recommends indexes to use for selection

28 Sheep Performance Programs National Sheep Improvement Program Established standard recommendations for measuring growth, efficiency, reproduction, carcass traits Although slower to develop than other classes of livestock, programs are well organized

29 National Genetic Evaluation Problem – how to make fair comparisons between potential breeding stock raised in different environments? Solution – use ties between herds that are established because many sires are used across several herds due to artificial insemination

30 National Genetic Evaluation Breed associations maintain large databases of performance records for their herd improvement programs Data used to compare genetic merit of animals across entire breeds

31 National Genetic Evaluation Expected Progeny Difference (EPD) –Measure of predicted genetic merit –Used for comparison between animals BullWeaning Weight EPD A+40 B+10 –Means that Bull A is expected to sire calves that weigh 30 pounds more than the calves from Sire B

32 National Genetic Evaluation Expected Progeny Difference (EPD) –EPD is called the PTA for dairy cattle (Predicted Transmitting Ability) Dairy – conducted by USDA Beef – conducted by breed associations Swine – organized within STAGES program (Swine Testing and Genetic Evaluation System) directed by Purdue University

33 Mating Systems Inbreeding Linebreeding Linecrossing Crossbreeding

34 Mating Systems Inbreeding –Mating of related individuals –Increases homozygocity –Does not cause mutations –Does increase homozygous recessive frequency so increases frequency that mutant genes are expressed

35 Mating Systems Inbreeding –Inbreeding depression recessive alleles tend to be inferior causes decline in performance due to increase in frequency of recessive homozygotes most decline in reproduction and livability

36 Mating Systems Linebreeding –Mating system that causes large relationship to one outstanding ancestor while keeping inbreeding low –Useful to retain genes of outstanding individual who is not longer available for breeding purposes –Outstanding individual must appear in pedigree several times at least 3-4 generations back

37 Mating Systems Linecrossing –Mating unrelated individuals within a breed –Causes some increase in performance (less than what is seen with crossbreeding)

38 Mating Systems Crossbreeding –Mating of individuals from different breeds –Benefits heterosis – advantage of crossbred individual compared to the average of the component purebreds breed complementarity – using benefits from breeds while hiding the flaws

39 Mating Systems Heterosis –Individual heterosis – advantage of crossbred offspring –Maternal heterosis – advantage of crossbred mother –Paternal heterosis – advantage of crossbred sire

40 Mating Systems Heterosis –Opposite of inbreeding depression –Results from increase in heterozygocity –Reproduction – large advantage from heterosis –Growth – moderate advantage from heterosis –Carcass – little advantage from heterosis

41 Crossbreeding Systems Terminal –Specific breed(s) of sire mated to specific breed(s) of dam Rotational –Breeds used in a regular cycle, daughters of one breed of sire mated to next breed of sire

42 Crossbreeding Systems Terminal –Uses maximum breed complementarity –Uses maximum heterosis –Must bring in replacement breeding stock Rotational –Replacement females retained by system –No breed complementarity –Some loss of heterosis


Download ppt "Principles of Selecting and Mating Farm Animals (Chapter 9) Genetic improvement of farm animals –Involves selection (choosing the best to be parents) –Involves."

Similar presentations


Ads by Google