Presentation is loading. Please wait.

Presentation is loading. Please wait.

Horsehead Nebula in Orion

Similar presentations


Presentation on theme: "Horsehead Nebula in Orion"— Presentation transcript:

1 Horsehead Nebula in Orion

2 UNIT 5 SPACE EXPLORATION
Focussing Questions What technologies have been developed to observe objects in the sky, and what discoveries were made with them? How has the development of these technologies contributed to the exploration, use, and understanding of space? How have technologies designed for space science been applied to produce benefits on Earth?

3 Exploring The first moon landing by Apollo 11 on July 20, 1969, would not have been possible without many prior technological advancements. Increase in scientific knowledge gained by the moon missions promoted the development of new inventions on Earth for scientific and everyday use.

4 Exploring Technology is a tool that helps solve a problem.
Science is one method of acquiring further knowledge. Technology advances scientific knowledge, and science in turn develops new technology for solving new problems.

5 Topic 1 For Our Eyes Only Ancient cultures used the regular cycles of the Sun, Moon, stars, constellations and visible planets to mark the passage of time. Knowledge was passed on orally or in writing from generation to generation and culture to culture often in the form of legends and folklore. Finding patterns in time was essential in predicting the changing of the seasons and marking important events in peoples’ lives.

6 The Big Dipper

7 What Our Ancestors Saw Ancient peoples used their eyes, calendars and monuments to track important changes: Examples lunar cycles scraped on antler Stonehenge - summer solstice Chichen Itza - spring and fall equinoxes Khufu Pyramid - Thuban (former North Star) First Nations medicine circles in Alberta - rising of Sirius

8 Position of Objects in Space
Our reference point for measuring the position of objects in space is usually the Earth. The two measurements required are: 1) compass direction (azimuth) North = bearing 00 2) altitude above the horizon (max. = zenith) horizon = 00

9 Models of Planetary Motion
The first calendars were lunar (Moon). They were accurate enough for nomadic hunters, gatherers and fisherman. The settled societies that followed needed more precise solar (Sun) calendars to predict planting and harvest times. Figuring out how the regular motions of the Sun and Moon fit in with the irregular wandering paths of the five known planets was a puzzle that took thousands of years to solve. How the Earth fit into this puzzle was also a mystery.

10 The Geocentric Model The Ancient Greek Ptolemy first proposed that the universe was Earth-centered. His conclusion made sense given the knowledge and technology of the time and the everyday experience of people. Ptolemy thought the Sun and five known planets orbited the Earth, while the stars were fixed in place on a domed ceiling called the celestial sphere.

11 The Heliocentric Model
For thousands of years, math and geometry were the only tools available for studying the universe, but with the development of optical instruments, modern astronomers began to make discoveries that questioned the geocentric model. In 1530, Nicholas Copernicus made observations that led him to conclude that the Sun was at the center of the universe while the Earth and other planets revolved around the Sun.

12 The Heliocentric Model
In 1610, Galileo Galilei provided evidence for Copernicus’s hypothesis using a telescope. Wandering planets made sense if they revolved around the Sun along with Earth. He was also able to observe lunar mountains, bumps on Saturn (rings), four moons orbiting Jupiter, sunspots and the phases of Venus. Observations of planetary motion by Tycho Brahe and mathematical calculations by Johannes Kepler led Kepler to conclude that planetary orbits were elliptical instead of circular. The heliocentric model was now fully developed.

13 An ellipse is oval or egg-shaped.
The Sun is off center from a planet’s orbital path.

14 For Our Eyes Only - Answers
TOPIC 1 READING ASSIGNMENT For Our Eyes Only - Answers If you look at the sky the sun and moon appear to move across the horizon. These objects rise in the east and set in the west. This motion is caused by the Earth’s rotation. However, as we look in the sky our common sense tells us that the Earth is not really moving. It seems that everything else is moving around our planet. When we make these observations it is because we are using the Earth as a fixed frame of reference.

15 If you are riding in a vehicle that is moving at a rate of 100Km per hour you feel stationary inside because you do not move relative to the vehicle. When you look out it feels as though the road is moving towards you at a rate of 100 km per hour. If you think this way you are using the vehicle as a frame of reference. A person standing next to the road would be using the Earth as their frame of reference. They would say that you and the vehicle were moving at 100km/h relative to the ground. Each frame of reference is neither correct nor incorrect. They are just two different reference frames – two different points of view.

16 What Our Ancestors Saw (short answer)
Describe 4 things that ancient peoples learned by watching the celestial bodies in the sky. 1.Stars make unchanging patterns in the sky – they looked like objects and were grouped and called constellations. 2. On successive days a star would rise and set 4 minutes earlier than the day before - different stars would be in the night sky over a period of months. 3. The sun rises and sets at a rate different than the stars The Moon also rises and sets at a rate different than the stars. The moon shows phases. 4. Five other solar bodies rise and set at rates different than the stars – Mercury, Venus, Mars, Jupiter, and Saturn. These special bodies were called planets.

17 Sky Co-ordinates (paragraphs)
Ancient peoples not only told stories about the celestial bodies in the sky, but they also made attempts to measure the celestial bodies locations in the sky. To do this they would give a celestial body two co-ordinates measured in degrees. In two or three paragraphs describe this process of measurement. Make sure to use the following terms in your description: azimuth, altitude, altitude-azimuth co-ordinates, astrolabe, and compass. The azimuth (first angle) is measured clockwise from the north. The next measurement taken is the altitude which is the celestial bodies angle (in degrees) above the horizon. The angles that are used to describe the co-ordinates are referred to as altitude-azimuth co-ordinates. These co-ordinates show the position of a celestial body relative to a fixed Earth (as if the bodies were revolving around the Earth). These measurements will change depending on the time of day that they are taken. Accurate measurements of celestial and Earth objects depend on available technology. An astrolabe is a device that measures the altitude of an object. Te azimuth angle can be measured with a compass.

18 Models (Questions) 1. Knowing what we know about the solar system now, what was the main problem with Aristotle’s earth-centered model. In actuality the stars do not revolve around the Earth. Although the model provided a means of predicting the dates and times when celestial bodies rose and set, it required up to 55 different inner spheres to account for the motions, which was cumbersome, and it was difficult to explain why Mars, Jupiter & Saturn sometimes reversed their direction (retrograde motion). 2. Aristotle’s earth centered model was replaced with the heliocentric model. Why was this model better? This model more accurately reflects what actually happens with the motion of stars, and our solar system.

19 Topic 2- Stronger Eyes and Better Numbers
Technology has been used for thousands of years to measure time. Examples include: sundial merkhet (Ancient Egyptians) to predict star motion quadrant (also Egyptian) to measure star altitude astrolabe (Arabs) to chart star positions cross-staff (Gurson 1300s) to measure angle between Moon and stars first optical telescope (1500s)

20 Discovery Through Technology
As lens grinding technology improved and telescopes became more powerful, it became obvious that distance and size as we know them on Earth are minute compared to the scale of space and the objects in it. Earth is a small planet orbiting an average star half- way out on one arm of the Milky Way galaxy. The Milky Way itself is but one galaxy in a local neighbourhood of 20 other galaxies surrounded by billions of others.

21 Distance & Time in Space
The kilometre is too small a unit to measure the vast distances in space. The two units commonly used are the: astronomical unit (AU) for local solar system distances 1 AU equals the average distance between the center of the Sun and center of the Earth, and light-year for interstellar and intergalactic distances 1 light-year is the distance light travels in one year because the speed of light is km/s in a vacuum, a light year is about 9.5 trillion kilometres

22 Distance & Time in Space
Distance is not the only quantity that is immense in space. If light takes time to travel between two points, then we are actually looking back in time when observing distant objects in space. Given the small distances on Earth, light only appears to instantly move from place to place. In fact, it takes light: 1 second to reach Earth from the Moon 8 minutes to reach Earth from the Sun 5 hours to reach Earth from Pluto over 4 years to reach Earth from Proxima Centauri, the next closest star years to reach Earth from the Milky Way’s center!

23 Birth of a Star The life cycle of a star can be compared to the birth, growth and death of a living organism. Gravity pulls gas and dust in a nebula together into a rotating sphere. The accumulation of more matter in the core causes the temperature to rise and possibly start to glow (protostar). Heating in the core to C will cause the fusion of hydrogen into helium. A Star is born as huge amounts of radiation are given off.

24 Life & Death of a Star A star continues to emit radiation for millions or even billions of years. Depending on its mass, a star can be either: Sun-like (main sequence in the H-R diagram), or massive. A star reaches the end of its life cycle when the supply of hydrogen fuel runs out.

25 Star Life Cycles Sun-like Stars
become a red giant in their second stage as the outer layers expand and cool become a white dwarf in their third stage as fusion stops and the remaining material collapses inward further cooling may create a black dwarf Massive Stars become a red supergiant in their second stage gravity causes them to collapse so rapidly in the third stage that an outgoing shock wave makes the outer layers explode as a supernova supernova remnants form a neutron star or black hole

26 Star Definitions red giant - a relatively cool, large-diameter stage of a Sun-like star red supergiant - a larger-diameter red giant from an aging massive star white dwarf - a low-pressure, fusion-less collapsed star with a small diameter black dwarf - the death stage of a Sun-like star supernova - the explosion of a red supergiant following collapse neutron star - a rapidly spinning star remnant black hole - a dense star remnant not allowing light to escape

27 Topic 4 – Bigger and Smarter Telescopes
Adaptive Optics - Latest Advances The latest advances in telescope design are adaptive optics and multiple mirror interferometry. Adaptive optics involves combining lasers with computers to sense the turbulence of the atmosphere. This information is relayed to machines under the telescope’s objective mirror that distort the mirror to cancel the effect of the atmosphere on the image. Multiple Mirror Interferometry This telescope advance combines the images from more than one mirror to create, in effect, a mirror the size of the distance between the mirrors.

28

29

30 TOPIC 5 NOTES There are many types of radiation that come from stars. The type of radiation that we are most familiar with is light radiation. Other types are: radio waves microwaves infrared radiation ultra violet radiation x-rays gamma rays

31 Astronomers use radio waves to tell them things about distant stars
Astronomers use radio waves to tell them things about distant stars. Technology had provided science with radio telescopes – devices that can intercept and track radio wave emissions from far away stars. Radio telescopes gave scientists information about planets that they never had before. As radio telescope technology improved, scientists were able to match radio signals to the optical telescopes that they had previously used. This resulted in much clearer images of distant stars. Taking this one step further, scientists started linking radio telescopes together. They then processed their images with computer technology in a process called interferometry. This is like seeing with many eyes instead of one.

32 Topic 6 – Above the Atmosphere and Under Control

33 Technologies for Space Transport
The greatest challenges in space travel have been: achieving escape velocity to break free of Earth’s gravitational force designing materials and equipment able to withstand the extreme environment of space transporting people out and back safely

34 telecommunications navigation remote sensing, and weather forecasting.
Satellite technology is used for many Earth-based applications, including: telecommunications navigation remote sensing, and weather forecasting. Satellites, unmanned space probes and manned spacecraft need a velocity of about km/h, or 11 km/s, to escape Earth’s gravity!

35 The Achievements of Rocket Science
Early experiments in rocket propulsion included: - Archytas’s steam-powered pigeon (Ancient Greece) - gunpowder arrows for warfare (China 1st C A.D.) - Robert Goddard’s liquid fuel rockets (1920s) - Wernher von Braun’s V2 rockets (1940s) - Sputnik I, the first artificial satellite (October 4, 1957) - Sputnik II, with Laika, the first space traveller (1957)

36 The father of modern rocketry is considered to be Robert Goddard
The father of modern rocketry is considered to be Robert Goddard. Along with Konstantin Tsiolkovsky of Russia and Hermann Oberth of Germany, Goddard envisioned the exploration of space. Goddard was a physicist with a unique genius for invention. By 1926, Goddard had constructed and successfully tested the first liquid-fuel rocket with a rocket flight on March 16,1926, at Auburn, Massachusetts.

37 Wernher von Braun was one of the first and foremost rocket engineers and a leading authority on space travel. His will to expand knowledge through the exploration of space led to the development of the Explorer satellites, the Saturn rockets, and Skylab, the world's first space station. In addition, his determination led to humans landing on the moon. The V2 rocket was developed during World War II using a fuel of alcohol and oxygen.

38 The Apollo 17 capsule making a parachute landing in the ocean in December 1972

39 Rocket Basics Three Parts
• mechanical elements (currently about 3% of mass) - includes rocket, engines, storage tanks, fins • payload (currently about 6% of mass) - includes crew cabins, crew, food, water, air • fuel (currently about 91% of mass) What is currently the major challenge in rocket design?

40 TOPIC 6 READING ASSIGNMENT - Key
Fill in the Blanks Rockets were invented long ago and were used for fireworks as well as weapons. A rocket is a tube that contains _combustible_ material______ in one end. On the other end of the rocket is the _payload_____, which is what the rocket will transport. The principle that makes a rocket work is called the _action/reaction____________ principle.

41 Rockets must have some type of fuel to make them work
Rockets must have some type of fuel to make them work. The escaping exhaust in the combustion reaction within the rocket is called the _exhaust____ _velocity____. This is one factor that determines how far the rocket will be able to go. The first scientist to launch a liquid fuel rocket in 1926 was _Robert_____ __Goddard___. He also realized that that a _staged________ ___rocket________ would be able to fly higher and faster. A _ballistic____ _missile_______ is a bomb that is powered by a rocket engine.

42 American and Russian scientists were able to calculate and control orbits by using _computers________. The early outer space flights were controlled by _computers__ on _the ground________________. Eventually technology improved to the point where the craft could be controlled from _within________.

43 Short Answer Read the section on “Using Gravity” on page Describe gravitational assist. This is a method of increasing acceleration by using the gravity of a planet. The spacecraft is sent around one planet. Its gravity attracts the craft causing it to speed up and change direction. The spacecraft slingshots away from the planet at a higher velocity.

44 Tell how the Hubble Space Telescope was put into outer space.
The bus sized telescope was aboard the space shuttle Discovery, and was deployed by the astronauts aboard the craft. Describe how the world has become a “global village” of instant communications. With the deployment of satellites in a geosynchronous orbit, we are able to have improved radio and television signals.

45 Paragraphs Read about Global Positioning Systems on page In a few paragraphs tell how GPS devices work and how they can be now used for non-military applications. Main points to mention: US military deployed many NAVSTAR (navigation satellite tracking and ranging) satellites km above Earth. GPS satellites take about 12 hours to complete one orbit. Many satellites in orbit – always at least 3 above the horizon Satellites send out radio signals that tell the exact time and location. Hand-held GPS units use computer technology to calculate distances and locations on Earth.

46 Future Propulsion Technologies
Finding alternatives to liquid or gas burning fuels would decrease our reliance on inefficient fossil fuels and the mass problems associated with storing and transporting all that fuel. Possible alternatives for the future include: 1) ion drives (using electrically-charged xenon gas) 2) solar sails (using carbon-fibre sails to absorb photons)

47 Shuttles, Probes & Space Stations
The International Space Station (ISS) is a modularized permanent laboratory that will also serve as a base for building and launching rockets for interplanetary travel. What are the advantages and disadvantages of building and launching spacecraft from Earth orbit or the Moon?

48

49 Sounds of Earth recording carried by Voyager
Image of Saturn by Voyager 2, 1981 The Voyager I and II space probes were launched in 1977

50 International Space Station
Canadarm2

51 Living in Space no air (near vacuum) or air pressure no water
The hazards of space consist of: no air (near vacuum) or air pressure no water cosmic rays solar radiation (esp. solar flares) debris and objects in space temperature extremes psychological stress due to confinement and isolation physical stress due to lack of gravity and exercise combined with extended time in space

52 Space Suit Technology Suits must be designed to mimic an Earth environment capable of sustaining human life for periods long enough to work outside a spacecraft or space station. What features must be built into a suit? 1) 2) 3) 4) 5) 6)

53 Space Station Technology
Essential features include: clean water (electrolysis + recycling nearly 100%) breathable air (removing CO2, microorganisms, dust and moisture) suitable temperature and air pressure a source of power

54 Meeting Human Needs on Earth
How do satellites transmit and receive information from the ground? Data is relayed using radio waves. Some satellites, such as those used in weather forecasting, are placed in geosynchronous orbit, which means the satellite moves so it is over the same location at all times. Other satellites, such as RADARSAT and LANDSAT, monitor global activities such as shipping, soil, fires and potential resources. They are not placed in geosynchronous orbits for these reasons.

55 A sample satellite

56 Remote Sensing global temperature soil and vegetation patterns
Satellites can monitor changes in: global temperature soil and vegetation patterns the atmosphere industry and urbanization. • In addition, remote sensing can locate mineral and fuel resources hidden undersea and underground.

57

58 Global Positioning Systems (GPS)
Twenty-four satellites transmit location data back to Earth from orbit. 1) What minimum number of satellites would it take to pinpoint the compass position of an object on the surface? 2) How many satellites would be needed to establish the altitude at that same latitude and longitude on Earth as in 1) above? HINT: The navigating principle that is also used by GPS technology is called triangulation.

59 Space Age Systems & Materials
Examples Computer: virtual reality software Consumer: improved bike helmets Medicine: digital imaging for detecting cancers Industrial: micro-lasers for cutting and melting Transportation: improved traction on winter tires Public Safety: emergency response robots

60 Topic 7 The Solar System Up Close
Planet Facts • The inner planets are smaller and rocky (terrestrial) Mercury, Venus, Earth, Mars • The outer planets are larger and gaseous (Jovian) Jupiter, Saturn, Uranus, Neptune, (Pluto) Why do the inner and outer planets differ?

61 Topic 7 - Continued Other Bodies
• asteroids - rocky, metallic bodies between Mars and Jupiter (Kuiper Belt) • comets - dirty snowballs of dust and ice that orbit another body in the solar system such as the Sun (e.g. Halley’s comet) • meteors & meteorites - rocky bodies that do (meteorite) or do not (shooting star = meteor) impact Earth’s surface • meteoroids = meteors + meteorites

62 Asteroid Ida viewed by the space probe Galileo enroute to Jupiter.


Download ppt "Horsehead Nebula in Orion"

Similar presentations


Ads by Google