Presentation is loading. Please wait.

Presentation is loading. Please wait.

Timothy Carlisle, Oxford CM 28. Step 3 Matching Step 3  Step 3 rematched for 830 mm spool piece  Calc. B(z) & BetaFn with the following:  Minimize.

Similar presentations


Presentation on theme: "Timothy Carlisle, Oxford CM 28. Step 3 Matching Step 3  Step 3 rematched for 830 mm spool piece  Calc. B(z) & BetaFn with the following:  Minimize."— Presentation transcript:

1 Timothy Carlisle, Oxford CM 28

2 Step 3

3 Matching Step 3  Step 3 rematched for 830 mm spool piece  Calc. B(z) & BetaFn with the following:  Minimize F at 1 point in a const. field region in 2 nd Tracker. 3 -5 -4 -3 -2 -1 0 z [m] Many solutions... 140 120 100 80 60 40 20 Beta Fn. [cm]

4 Step 3 Empty: 6mm  beam M1 = 158.9 M2 = 92.4 SigPz = 1 MeV/c, 100k muons Beta Fn. [cm] Bz [T] on Axis Emittance [mm] Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] 140 120 100 80 60 40 20 6.08 6.06 6.04 6.02 6 4 3 2 1 0 -2 -3 -4 202 201.5 201 200.5 200 199.5

5 Amplitude Cooling... Step 3 empty Step 4 empty Amp OUT Amp IN Amp OUT Amp IN 6mm beam, SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 140 120 100 80 60 40 20 0 20 40 60 80 100 120 140

6 Amplitude Cooling... Step 3: LiH Step 4: LH2 6mm beam, SigPz = 1 MeV/c, 100k muons Amp OUT Amp IN Amp OUT Amp IN 140 120 100 80 60 40 20 0 20 40 60 80 100 120 140 140 120 100 80 60 40 20 0 20 40 60 80 100 120 140

7 Theoretical Cooling Performance Input beam emittance [mm] d/d/

8 8 cooling heating G4MICE : 100k mu, SigPz =1 MeV/c

9 cooling heating Input beam emittance [mm] d/d/

10  Focus Coil switched off  No LH2  Minimized Fn at z= -0.3 m ~ centre of 2 nd Tracker  Range of solutions: 10 -5 -4 -3 -2 -1 0 z [m] -4 -2 0 z [m] 160 140 120 100 80 60 40 20 4 3 2 1 0 -2 -3 -4 Step IV but without FC Bz [T] on Axis Beta Fn. [cm]

11 Step 3: EmptyStep 4: EmptyStep 4: No FC currents Transmission 1000 mu 1% 400 mu 0.4% 400 mu 0.4% within Tracker Transmitted Quality cut: Amp < 16*Av.  Raw Beam -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] 100 99.5 99 98.5 98 97.5 100 99.8 99.6 99.4 99.2 90 100 99.8 99.6 99.4 99.2 90 6mm beam, SigPz = 1 MeV/c, 100k muons

12 Conclusions Clearly more difficult to measure cooling in Step 3 ~10 x more heating than Step 4 Step 3 cooling disagrees with theory  0 < theory – don’t know why (same in ICOOL) Need to include Tracker reconstruction... It appears we can run Step 4 without FC currents Is this useful – Trackers? Can we run Step 4 with no currents in M1,M2 & FC? Alignments?

13 Extras...

14 Step 3 – comparison with existing data.. Empty Channel LiH absorber 14 cooling heating Black Data: 100k mu, SigPz =1 MeV/c, G4MICE Marco Data: 10k mu, SigPz = big (10%), ICOOL – note 199 0 1 2 3 4 5 6 7 8 9 10 Input emittance [mm] 0 1 2 3 4 5 6 7 8 9 10 Input emittance [mm] 5% 2% 0 6% 3% 0 -2% -4%

15 Step3 Empty: 1mm  beam SigPz = 1 MeV/c, 100k muons B(z) on Axis M1 = 158.9 M2 = 92.4 Emittance [mm] Beta Fn. [cm] Bz [T] on Axis Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] 4 3 2 1 0 -2 -3 -4 140 120 100 80 60 40 20 200.4 200.3 200.2 200.1 200

16 Step 3 LiH: 6mm  beam M1 = 158.9 M2 = 92.4 SigPz = 1 MeV/c, 100k muons Beta Fn. [cm] Bz [T] on Axis Emittance [mm] Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -6 -4 -2 0 z [m] 140 120 100 80 60 40 20 5.9 5.85 5.8 5.75 5.7 4 3 2 1 0 -2 -3 -4 210 208 206 204 202 200 198 196 194 -5 -4 -3 -2 -1 0 z [m]

17 Step 4 Empty: 6mm  beam SigPz = 1 MeV/c, 100k muons Beta Fn. [cm] Bz [T] on Axis Emittance [mm] Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -6 -4 -2 0 2 z [m] -5 -4 -3 -2 -1 0 z [m] 5.952 5.95 5.948 5.946 5.944 5.942 4 3 2 1 0 -2 -3 -4 202 201.5 201 200.5 200 140 120 100 80 60 40 20 Beta Fn. [cm]

18 Step 4 LH2: 6mm  beam SigPz = 1 MeV/c, 70k muons Bz [T] on Axis Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -6 -4 -2 0 2 z [m] -6 -4 -2 0 z [m] 5.9 5.7 4 3 2 1 0 -2 -3 -4 208 206 204 202 200 198 1 96 140 120 100 80 60 40 20 Beta Fn. [cm] Emittance [mm]

19 Output AmpSq Step 3 Empty Step 4 Empty Step 3 LiH Step 4 LH2


Download ppt "Timothy Carlisle, Oxford CM 28. Step 3 Matching Step 3  Step 3 rematched for 830 mm spool piece  Calc. B(z) & BetaFn with the following:  Minimize."

Similar presentations


Ads by Google