Presentation is loading. Please wait.

Presentation is loading. Please wait.

Objectives-What we’ll learn…

Similar presentations


Presentation on theme: "Objectives-What we’ll learn…"— Presentation transcript:

1 Adjacent, Linear Pairs Vertical, Supplementary, and Complementary Angles

2 Objectives-What we’ll learn…
Identify and use adjacent angles and linear pairs of angles. Identify and use vertical, complementary and supplementary angles.

3 Adjacent angles are “side by side” and share a common ray.
15º 45º

4 These are examples of adjacent angles.
45º 80º 35º 55º 130º 50º 85º 20º

5 These angles are NOT adjacent.
100º 50º 35º 35º 55º 45º

6 Linear pair of angles two angles that share a vertex form a straight line (add to 180°)

7 B D 130 A 50 E AEB & BED are a linear pair of angles. They form a straight line & =180.

8 When 2 lines intersect, they make vertical angles.
75º 105º 105º 75º

9 Vertical angles are opposite to one another.
75º 105º 105º 75º

10 Vertical angles are opposite one another.
75º 105º 105º 75º

11 Vertical angles are congruent (equal).
150º 30º 150º 30º

12 Supplementary angles add up to 180º.
40º 120º 60º 140º Adjacent and Supplementary Angles Supplementary Angles but not Adjacent

13 Complementary angles add up to 90º.
30º 40º 50º 60º Adjacent and Complementary Angles Complementary Angles but not Adjacent

14 Practice Time!

15 Directions: Identify each pair of angles as vertical, supplementary, complementary, or none of the above.

16 #1 120º 60º

17 #1 120º 60º Supplementary Angles

18 #2 60º 30º

19 #2 60º 30º Complementary Angles

20 #3 75º 75º

21 #3 Vertical Angles 75º 75º

22 #4 60º 40º

23 #4 60º 40º None of the above

24 #5 60º 60º

25 #5 60º 60º Vertical Angles

26 #6 135º 45º

27 #6 135º 45º Supplementary Angles

28 #7 25º 65º

29 #7 25º 65º Complementary Angles

30 #8 90º 50º

31 #8 90º 50º None of the above

32 Directions: Determine the missing angle.

33 #1 45º

34 #1 135º 45º

35 #2 65º

36 #2 25º 65º

37 #3 35º

38 #3 35º 35º

39 #4 50º

40 #4 130º 50º

41 #5 140º

42 #5 140º 140º

43 #6 40º

44 #6 50º 40º

45 Applications of Complementary and Supplementary Angles
Let x = the measure of an angle, then = complement of the angle, and = supplement of the angle Now let us apply this information.

46 x = 18 (measure of the complement) 4x = 72 (measure of the angle)
Example #1 The measure of an angle is 4 times the measure of its complement. Find the measure of the angle and the measure of its complement. Solution (Method #1) Let x = the measure of the complement. Let 4x = the measure of the angle x + 4x = 90 5x = 90 x = 18 (measure of the complement) 4x = 72 (measure of the angle)

47 Example #1 Method #2 Let x = the measure of the angle
Let 90 – x – measure of the complement x = 4(90 – x) x = x 5x = 360 x = 72 (angle measure) 90 – x = 18 (complement measure)

48 Example #2 The ratio of the complement of an angle to the supplement of the angle is 2:7. Find the measure of the original angle. Solution: Let x = the angle measure Let 90 – x = measure of the complement Let 180 – x = measure of the supplement

49 Example #2 (Continued)


Download ppt "Objectives-What we’ll learn…"

Similar presentations


Ads by Google