Download presentation
1
Adjacent, Linear Pairs Vertical, Supplementary, and Complementary Angles
2
Objectives-What we’ll learn…
Identify and use adjacent angles and linear pairs of angles. Identify and use vertical, complementary and supplementary angles.
3
Adjacent angles are “side by side” and share a common ray.
15º 45º
4
These are examples of adjacent angles.
45º 80º 35º 55º 130º 50º 85º 20º
5
These angles are NOT adjacent.
100º 50º 35º 35º 55º 45º
6
Linear pair of angles two angles that share a vertex form a straight line (add to 180°)
7
B D 130 A 50 E AEB & BED are a linear pair of angles. They form a straight line & =180.
8
When 2 lines intersect, they make vertical angles.
75º 105º 105º 75º
9
Vertical angles are opposite to one another.
75º 105º 105º 75º
10
Vertical angles are opposite one another.
75º 105º 105º 75º
11
Vertical angles are congruent (equal).
150º 30º 150º 30º
12
Supplementary angles add up to 180º.
40º 120º 60º 140º Adjacent and Supplementary Angles Supplementary Angles but not Adjacent
13
Complementary angles add up to 90º.
30º 40º 50º 60º Adjacent and Complementary Angles Complementary Angles but not Adjacent
14
Practice Time!
15
Directions: Identify each pair of angles as vertical, supplementary, complementary, or none of the above.
16
#1 120º 60º
17
#1 120º 60º Supplementary Angles
18
#2 60º 30º
19
#2 60º 30º Complementary Angles
20
#3 75º 75º
21
#3 Vertical Angles 75º 75º
22
#4 60º 40º
23
#4 60º 40º None of the above
24
#5 60º 60º
25
#5 60º 60º Vertical Angles
26
#6 135º 45º
27
#6 135º 45º Supplementary Angles
28
#7 25º 65º
29
#7 25º 65º Complementary Angles
30
#8 90º 50º
31
#8 90º 50º None of the above
32
Directions: Determine the missing angle.
33
#1 ?º 45º
34
#1 135º 45º
35
#2 ?º 65º
36
#2 25º 65º
37
#3 ?º 35º
38
#3 35º 35º
39
#4 ?º 50º
40
#4 130º 50º
41
#5 ?º 140º
42
#5 140º 140º
43
#6 ?º 40º
44
#6 50º 40º
45
Applications of Complementary and Supplementary Angles
Let x = the measure of an angle, then = complement of the angle, and = supplement of the angle Now let us apply this information.
46
x = 18 (measure of the complement) 4x = 72 (measure of the angle)
Example #1 The measure of an angle is 4 times the measure of its complement. Find the measure of the angle and the measure of its complement. Solution (Method #1) Let x = the measure of the complement. Let 4x = the measure of the angle x + 4x = 90 5x = 90 x = 18 (measure of the complement) 4x = 72 (measure of the angle)
47
Example #1 Method #2 Let x = the measure of the angle
Let 90 – x – measure of the complement x = 4(90 – x) x = x 5x = 360 x = 72 (angle measure) 90 – x = 18 (complement measure)
48
Example #2 The ratio of the complement of an angle to the supplement of the angle is 2:7. Find the measure of the original angle. Solution: Let x = the angle measure Let 90 – x = measure of the complement Let 180 – x = measure of the supplement
49
Example #2 (Continued)
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.