Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 17 Hydrogenic atom (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made.

Similar presentations


Presentation on theme: "Lecture 17 Hydrogenic atom (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made."— Presentation transcript:

1 Lecture 17 Hydrogenic atom (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made available online by work supported jointly by University of Illinois, the National Science Foundation under Grant CHE-1118616 (CAREER), and the Camille & Henry Dreyfus Foundation, Inc. through the Camille Dreyfus Teacher-Scholar program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsoring agencies.

2 Hydrogenic atom We study the Schrödinger equation of the hydrogenic atom, of which exact, analytical solution exists. We add to our repertories another special function – associated Laguerre polynomials – solutions of the radial part of the hydrogenic atom’s Schrödinger equation.

3 Coulomb potential The potential energy between a nucleus with atomic number Z and an electron is Inversely proportional to distance Proportional to nuclear charge Attractive

4 Hamiltonian of hydrogenic atom The Classical total energy in Cartesian coordinates is Center of mass motion Relative motion

5 The Schrödinger equation 6-dimensional equation! Center of mass motion Relative motion

6 Separation of variables Center of mass motion Relative motion Separable into 3 + 3 dimensions

7 The Schrödinger equation Two Schrödinger equations Hydrogen’s gas-phase dynamics (3D particle in a box) Hydrogen’s atomic structure In spherical coordinates centered at the nucleus

8 Further separation of variables The Schrödinger eq. for atomic structure: Can we further separate variables? YES Still 3 dimensional!

9 Further separation of variables Function of just rFunction of just φ and θ

10 Particle on a sphere redux We have already encountered the angular part – this is the particle on a sphere

11 Radial and angular components For the radial degree of freedom, we have a new equation. This is kinetic energy in the radial motion Original Coulomb potential + a new one

12 Centrifugal force This new term partly canceling the attractive Coulomb potential can be viewed as the repulsive potential due to the centrifugal force. The higher the angular momentum, the greater the force in the positive r direction

13 The radial part Simplify the equation by scaling the variables

14 The radial solutions We need a new set of orthogonal polynomials: The solution of this is Associated Laguerre polynomials Slater-type orbital Normalization

15 The Slater-type orbital

16 Wave functions

17 The radial solutions

18 Verification Let us verify that the (n = 1, l = 0) and (n = 2, l = 1) radial solutions indeed satisfy the radial equation

19 Summary The 3-dimensional Schrödinger equation for the hydrogenic atomic structures can be solved analytically after separation of variables. The wave function is a product of the radial part involving associated Laguerre polynomials and the angular part that is the spherical harmonics. There are 3 quantum numbers n, l, and m. The discrete energy eigenvalues are negative and inversely proportional to n 2.


Download ppt "Lecture 17 Hydrogenic atom (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made."

Similar presentations


Ads by Google