Download presentation

Presentation is loading. Please wait.

Published byCorey Davis Modified over 4 years ago

1
1 Priority Queues (Heaps) Sections 6.1 to 6.5

2
2 The Priority Queue ADT DeleteMin –log N time Insert –log N time Other operations –FindMin Constant time –Initialize N time

3
3 Applications of Priority Queues Any event/job management that assign priority to events/jobs In Operating Systems –Scheduling jobs In Simulators –Scheduling the next event (smallest event time)

4
4 Priority Queue Implementation Implemented as adaptor class around –Linked lists O(N) worst-case time on either insert() or deleteMin() –Binary Search Trees O(log(N)) average time on insert() and delete() Overkill: all elements are sorted –However, we only need the minimum element –Heaps This is what we’ll study and use to implement Priority Queues O(logN) worst case for both insertion and delete operations

5
5 Partially Ordered Trees A partially ordered tree (POT) is a tree T such that: –There is an order relation <= defined for the vertices of T –For any vertex p and any child c of p, p <= c Consequences: –The smallest element in a POT is the root –No conclusion can be drawn about the order of children

6
6 Binary Heaps A binary heap is a partially ordered complete binary tree –The tree is completely filled on all levels except possibly the lowest. In a more general d-Heap –A parent node can have d children We simply refer to binary heaps as heaps 0 32 45 root

7
7 Vector Representation of Complete Binary Tree Storing elements in vector in level-order –Parent of v[k] = v[k/2] –Left child of v[k] = v[2*k] –Right child of v[k] = v[2*k + 1] R lr lllrrrrl root rrrllrllrlR 7654321

8
8 Heap example Parent of v[k] = v[k/2] Left child of v[k] = v[2*k] Right child of v[k] = v[2*k + 1]

9
9 Examples Which one is a heap?

10
10 Implementation of Priority Queue (heap)

11
11 Insertion Example: insert(14) 14

12
12 Basic Heap Operations: insert(x) Maintain the complete binary tree property and fix any problem with the partially ordered tree property –Create a leaf at the end –Repeat Locate parent if POT not satisfied –Swap with parent else –Stop –Insert x into its final location

13
13 Implementation of insert

14
14 deleteMin() example 31 1314161921196865263231

15
15 deleteMin() Example (Cont’d) 31

16
16 Basic Heap Operations: deleteMin() Replace root with the last leaf ( last element in the array representation –This maintains the complete binary tree property but may violate the partially ordered tree property Repeat –Find the smaller child of the “hole” –If POT not satisfied Swap hole and smaller child –else Stop

17
17 Implementation of deleteMin()

18
18 Implementation of deleteMin()

19
19 Constructor Construct heap from a collection of item How to? –Naïve methods –Insert() each element –Worst-case time: O(N(logN)) –We show an approach taking O(N) worst-case Basic idea –First insert all elements into the tree without worrying about POT –Then, adjust the tree to satisfy POT, starting from the bottom

20
20 Constructor

21
21 Example percolateDown(7) percolateDown(6)percolateDown(5)

22
22 percolateDown(1) percolateDown(4)percolateDown(3) percolateDown(2)

23
23 Complexity Analysis Consider a tree of height h with 2 h -1 nodes –Time = 1(h) + 2(h-1) + 4(h-2) +... + 2 h-1 1 – = i=1 h 2 h-i i = 2 h i=1 h i/2 i – = 2 h O(1) = O(2 h ) = O(N) Proof for i=1 h i/2 i = O(1) –i/2 i ≤ ∫ i-1 i (x+1)/2 x dx – i=1 h i/2 i ≤ i=1 ∞ i/2 i ≤ ∫ 0 ∞ (x+1)/2 x dx Note: ∫u dv = uv - ∫v du, with dv = 2 -x and u = x and ∫2 -x dx = -2 -x /ln 2 –∫ 0 ∞ (x+1)/2 x dx = -x 2 -x /ln 2| 0 ∞ + 1/ln 2 ∫ 0 ∞ 2 -x dx + ∫ 0 ∞ 2 -x dx –= -2 -x /ln 2 2| 0 ∞ - 2 -x /ln 2| 0 ∞ = (1 + 1/ln 2)/ln 2 = O(1)

24
24 Alternate Proof Prove i=1 h i/2 i = O(1) – i=0 ∞ x i = 1/(1-x) when |x| < 1 –Differentiating both sides with respect to x we get – i=0 ∞ i x i-1 = 1/(1-x) 2 –So, i=0 ∞ i x i = x/(1-x) 2 –Substituting x = 1/2 above gives – i=0 ∞ i 2 -i = 0.5/(1-0.5) 2 = 2 = O(1)

25
25 C++ STL Priority Queues priority_queue class template –Implements deleteMax instead of deleteMin in default –MaxHeap instead of MinHeap Template –Item type –container type (default vector) –comparator (default less) Associative queue operations –Void push(t) –void pop() –T& top() –void clear() –bool empty()

26
26

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google