Download presentation
Presentation is loading. Please wait.
Published byRolf Holland Modified over 9 years ago
1
OBJECTIVE TLW interpret the arrangement of the Periodic Table, including groups and periods, to explain how properties are used to classify elements with 100% participation.
2
KWL Topic: Periodic Table of Elements K W L
3
The Periodic Table of The Elements
4
The Periodic Table Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals Nonmetals Metalloids
5
Basic Organization The periodic table is organized by:
Atomic structure Atomic number Chemical and Physical Properties
6
Uses of The Periodic Table
The periodic table is useful in predicting: chemical behavior of the elements trends properties of the elements
7
Atomic Structure Review
Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus).
8
Energy Levels Review Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms.
9
Energy Levels Review Electrons in levels farther away from the nucleus have more energy. Inner levels will fill first before outer levels.
10
Energy Levels & Valence Electrons
Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only)
11
Energy Levels & Valence Electrons
The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons
12
OBJECTIVE TLW interpret the arrangement of the Periodic Table, including groups and periods, to explain how properties are used to classify elements with 100% participation. (Day 2)
13
Using the Table to Identify Valence Electrons
Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18.
14
Using the Table to Identify Valence Electrons
Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons.
15
Using the Table to Identify Valence Electrons cont.
Groups 13–18 have 10 fewer than the group number. For example: Group 13 has 3 valence electrons. Group 15 has 5 valence electrons. Group 18 has 8 valence electrons.
16
Elements & Reactivity Reactivity is a chemical property that determines how elements will react with others to form compounds.
17
Elements & Reactivity What makes an element reactive?
Number of valence electrons each atom has When outer levels are full, atoms are stable. When they are not full, they react: gain, lose, or share 1 or 2 electrons.
18
Elements & Reactivity The most reactive metals are the elements in Groups 1 and 2. Elements in Group 1 need seven more electrons to fill their outer level. Elements in Group 2 need six more electrons to fill their outer level. These groups are known as the “givers” because they easily give up their valence electrons to make a compound.
19
Elements & Reactivity The most reactive nonmetals are the elements in Groups 16 and 17. Elements in Group 16 only need two more electrons to fill their outer level. Elements in Group 17 only need one more electron to fill their outer level. These groups are known as the “takers” because they easily receive valence electrons to make a compound.
20
Check Point Which subatomic particles compose the nucleus of an atom?
Electrons and neutrons Protons and electrons Protons and neutrons Protons and ions
21
Check Point At the atomic level, what makes elements reactive?
Having an outer energy level that is filled Having an outer energy level that is not filled Having the same number of electrons Having the same number of protons
22
Groups Groups run vertically in the periodic table.
They are numbered from 1–18. Elements in the same groups have the same number of valence electrons in the outer energy level. Grouped elements behave chemically in similar ways.
23
Group 1: Alkali Metals Contains: Metals Valence Electrons: 1
Reactivity: Very Reactive Properties: solids soft react violently with water shiny low density
24
Group 2: Alkaline-Earth Metals
Contains: Metals Valence Electrons: 2 Reactivity: very reactive, but less reactive than alkali metals (Group 1) Properties: Solids Silver colored More dense than alkali metals
25
Groups 3-12 Transition Metals
Contain: Metals Valence electrons: 1 or 2 Reactivity: less reactive than alkali and alkaline-earth metals Properties: Higher density Good conductors of heat and electricity
26
Groups 3-12 Transition Metals Below Main Table
Contain: The Lanthanide and Actinide Series These two rows are pulled out of sequence and placed below the main table to keep the table from being too wide. Lanthanides are #’s 58–71. Actinides are #’s 90–103.
27
Groups 3-12 Rare Earth Elements ~ Lanthanides
Lanthanides follow the transition metal # 57 Lanthanum in Period 6. Valence electrons: 3 Reactivity: Very reactive Properties: High luster, but tarnish easily High conductivity for electricity Very small differences between them
28
Groups 3-12 Rare Earth Elements ~ Actinides
Actinides follow the transition metal # 89 Actinium in Period 7 Valence electrons: 3 (but up to 6) Reactivity: unstable All are radioactive Most made in laboratories
29
Check Point Where are the metals located on the modern periodic table?
Next to the zigzag line on the table To the right of the metalloids on the table At the left-hand side of the table Spread evenly throughout the table
30
Check Point Which of the following is true of properties of elements in the same group of the periodic table? They have the same number of valence electrons They have the same number of electron shells They are identical in atomic mass They are not similar at all.
31
Metalloids A zig-zag line that separates metals from metalloids
Elements from Groups 13–17 contain some metalloids. These elements have characteristics of metals and nonmetals.
32
Group 13: Boron Group Group 13: Boron Group
Contains: 1 metalloid and 4 metals Valence Electrons: 3 Reactivity: Reactive Other shared properties: Solid at room temperature
33
Group 14: Carbon Group Contains: 1 non-metal, 2 metalloids, and 3 metals Valence Electrons: 4 Reactivity: Varies Other shared properties: Solid at room temperature
34
Group 15: Nitrogen Group Contains: 2 non-metals, 2 metalloids, and 1 metal Valence electrons: 5 Reactivity: Varies Other shared properties: All but N are solid at room temperature
35
Group 16: Oxygen Group Contains: 3 non-metals, 1 metalloid, and 2 metals Valence Electrons: 6 Reactivity: Reactive Other shared properties: All but O are solid at room temperature.
36
Groups 17 : Halogens Contain: Nonmetals Valence Electrons: 7
Reactivity: Very reactive Other shared properties Poor conductors of electric current React violently with alkali metals to form salts Never found uncombined in nature
37
Group 18 Noble Gases Contains: Nonmetals
Valence Electrons: 8 (2 for He) Reactivity: Nonreactive (least reactive group) Other shared properties: Colorless, odorless gases at room temperature Outermost energy level full All found in atmosphere
38
OBJECTIVE TLW interpret the arrangement of the Periodic Table, including groups and periods, by identifying various unknown elements based on their chemical and physical properties in addition to their location on the periodic table with 100% participation
39
3-Min Warm Up Element II Element I Group 1 Period 5 Group 17
Which of the following traits do Element I and Element II have in common? The same atomic number The same number of electron shells The same atomic mass The same number of valence electrons
40
Hydrogen Stands Apart H is set apart because its properties do not match any single group. Valence electrons: 1 Reactivity: very, but loses the 1 electron easily Properties: Similar to those of non-metals rather than metals
41
Periods Periods run horizontally across the Periodic Table
Periods are numbered 1–7 All the elements in a period will have the same number of energy levels, which contain electrons. Examples: Period 1 atoms have 1 energy level. Period 2 atoms have 2 energy levels. Period 5 atoms have 5 energy levels.
42
Periods Continued Moving from left to right across a period, each element has one more electron in the outer shell of its atom than the element before it. This leads to a fairly regular pattern of change in the chemical behavior of the elements across a period.
43
Check Point Which of the following is true of properties of elements in the same period of the periodic table? They have the same number of valence electrons They have the same number of electron shells They are identical in atomic mass They are not similar at all.
44
Check Point What can be said about the valence electrons as you cross the period? The number of valence electrons remain the same. The number of valence electrons decrease from left to right across a period The number of valence electrons increase from left to right across a period The valence electrons increase in mass
45
Check Point The element in Sulfur (S) has an atomic number of 16, an atomic mass of 32.1, and is a poor conductor of electricity. Based on this information, to which class of elements does sulfur most likely belong? metals metalloids solids nonmetals
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.