Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gene expression.

Similar presentations


Presentation on theme: "Gene expression."— Presentation transcript:

1 Gene expression

2 Gene expression The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene expression Transcription 2. Translation Protein folding  Functional protein

3 DNA’s information is copied into messanger RNA (mRNA) molecule in transcription

4 mRNA directs synthesis of a protein with amino acid sequence determined by the base sequence of the codons in mRNA Translation

5 Folded Unfolded Correct folding of a protein is needed to achieve functional activity

6 Transcription: a mRNA copy of a DNA sequence is produced
RNA polymerases make RNAs Other strand is used as a template mRNA copy has one strand Beside the coding area also other information is added to mRNA molecule Sequence is complementary for DNA Ts are replaced with uracils, U

7 mRNA is produced and processed in the nucleus: 1.Introns are cutted off 2.Methyl cap is added to 5’ end 3.Poly A tail is added to 3’ end Nucleus Cytoplasm The ready mRNA molecule is transported to the cytoplasm

8 From a mRNA to a protein…
Decoding mRNAs codon sequence to protein is dependent on transfer RNAs (tRNA) All tRNAs have similar structure amino acid part anticodon part Anticodon part base pairs with it’s anticodon structure in mRNA Amino acid part carries correct amino acid to the place of protein synthesis tRNAs are needed for recognition and transport Amino acid mRNA

9 Protein synthesis Protein synthesis takes place in the ribosomes
Ribosomes are located to the cytoplasm Ribomes recognize the initiation codon from mRNA Elongation of a protein chain includes three steps main steps

10 Step 0. mRNA arrives to the ribosome and the ribosome starts to ”read” mRNAs code Step 1. tRNA forms a pair with the corresponding codon in mRNA Step 2. A bond is formed by ribosome between the adjacent amino acids Step 3. The ribosome translocates to the next mRNA codon and the ”used” tRNA is discharged from the ribosome

11 Previous steps are repeated until the ribosome
arrives to the stop codon Step 4. Termination is carried out with the help of termination factors After termination the nascent protein is released from the ribosome, the ribosome dissociates and the mRNA is released Step 5. Following the translation proteins are folded and sometimes also chemically modificated

12

13 Protein folding Protein´s folding is dictated by it’s amino acid sequence Correct folding is needed for the protein to achieve proper functional properties Proteins assisting in the folding process are known 3D structure can be predicted from the aa-sequence The function of a protein can be predicted from it’s structure

14 Protein folding…

15 Expression control The action of a cell is dependent on it’s proteins
Amount of the proteins are determined by: Concentration of the RNA Frequency at which the RNA in translated to the protein Stability of the protein Only a small portion of the genes in a cell are expressed  Depends on the cell type, developmental stage, environmental factors…

16 Regulation can happen at any stage of gene expression
Control of the transcription initiation is the most important Different kind of control elements are found In eukaryotes, the control elements of transcription can be found from the inside and outside the gene area Most important control element is the promoter  Initiation place  Directs binding of the enzymes needed to produce RNA

17 Control of the initiation of transcription
5’ regulatory sequences  control the site of transcription initiation  The promoter RNA polymerase can`t recognise transcription start sites Start sites are positioned 25 bp to 3’ direction from a nucleotide sequence motif called the TATA BOX General transcription factors guide RNA polymerase to the start site  TFIID-protein binds to TATA BOX  Directs the binding of the RNA polymerase

18 Other transcription factors are also needed
 TFIIA, TFIIB, TFIIE and TFIIH bind close to the start site Some transcription factors bind to the RNA polymerase Critical properties are brought by transcription factor  needed for example to unwind the DNA Also enhancer are needed for activation of transcription  Are found from the genome  Binding sites for activators

19 Thank you all for your attention!


Download ppt "Gene expression."

Similar presentations


Ads by Google