Presentation is loading. Please wait.

Presentation is loading. Please wait.

Global biomass flows in the emerging bioeconomy: A view on the challenges from a technology and innovation management perspective Prof. Dr.

Similar presentations


Presentation on theme: "Global biomass flows in the emerging bioeconomy: A view on the challenges from a technology and innovation management perspective Prof. Dr."— Presentation transcript:

1 Global biomass flows in the emerging bioeconomy: A view on the challenges from a technology and innovation management perspective Prof. Dr. Stefanie Bröring Dr. Nina Preschitschek Ravello, 18 June 2015

2 Agenda Challenges of the bioeconomy from TIM perspective
Examples from bioethanol Implications for TIM research in the bioeconomy

3 Forecast of biofuels feedstock and bioethanol production in 2022
Share of feedstock used for biofuels production Regional distribution of world ethanol production in 2022 Source: OECD-FAO Agricultural Outlook

4 Literature analysis on the emerging research landscape of the bioeconomy: TIM perspective
Database: SciVerse Scopus (provided by Elsevier B.V.) Keywords: ‘bio-based econom* OR biobased economy* OR bio-econom* OR bioeconom*’ Search fields: title, abstract and keywords of journal articles and reviews Clustering of publications according to subject areas provided by SciVerse Scopus Publications with research questions of technology and innovation management 6 Publications including the terms ‘technology management’ or ‘innovat*’ 52 Publications in the field of socioeconomic sciences All publications on bio(-)economy and bioeconomic(s) ,491 Source: Golembiewski, Sick, Bröring, S. (2015): The emerging research landscape on bioeconomy: What has been done so far and what is essential from a technology and innovation management perspective?, Innovative Food Science and Technology 03/2015.

5 Challenges of TIM within the process of moving towards a bioeconomy
Creation, exchange and application of (new) knowledge Concept of ‘knowledge-based bio-economy’ (KBBE) Knowledge management as part of TIM research Complex knowledge base Barriers like ‘industry recipes’ and cognitive distances Innovation causing spillovers between so far distinct disciplines Enabling resource allocation and biomass flow as major challenge for TIM Value chain/discipline crossing technology development High risk perception instead of seeing potential advantages Low acceptance rates of new technologies and products on B2B- and B2C-level Modification of standard TIM tools like the technology acceptance model Commercialization and market diffusion

6 Innovation process and challenges – Complex knowledge base
basic research technology development predevelopment activities market introduction theory technology prototype invention innovation TIM process exploratory exploitative product & process development Emerging challenges for TIM deduced from literature exemplary topics for TIM research complex knowledge base anticipating new knowledge areas with publications and patent analysis technology foresight dynamic capabilities to adapt to changing environments open innovation value chain / discipline crossing technology development process of technology convergence technology transfer (academia-industry) collaborations across different subsectors cross-industry innovation convergence of value chains commercialization and market diffusion technology adoption and diffusion (in B2B) technology acceptance model (B2C) food technology/raw material neophobia Source: Golembiewski, Sick, Bröring, S. (2015): The emerging research landscape on bioeconomy: What has been done so far and what is essential from a technology and innovation management perspective?, Innovative Food Science and Technology 03/2015.

7 Anticipating new knowledge areas via patent analysis: Patent Mapping Approach
Keyword-based search on cellulose and ethanol for 2000 – 2010 in Thomson Innovation “ThemeScape Map” based on DWPI families and IPC-grouping Note: We thank Thomson Reuters for providing a free trial on Thomson Innovation.

8 Innovation process and challenges – Value chain / discipline crossing technology development
basic research technology development predevelopment activities market introduction theory technology prototype invention innovation TIM process exploratory exploitative product & process development Emerging challenges for TIM deduced from literature exemplary topics for TIM research complex knowledge base anticipating new knowledge areas with publications and patent analysis technology foresight dynamic capabilities to adapt to changing environments open innovation value chain / discipline crossing technology development process of technology convergence technology transfer (academia-industry) collaborations across different subsectors cross-industry innovation convergence of value chains commercialization and market diffusion technology adoption and diffusion (in B2B) technology acceptance model (B2C) food technology/raw material neophobia Source: Golembiewski, Sick, Bröring, S. (2015): The emerging research landscape on bioeconomy: What has been done so far and what is essential from a technology and innovation management perspective?, Innovative Food Science and Technology 03/2015.

9 Emergence of new production systems, technology platforms and complete new value chains
Als Biokonversion bezeichnet man die Umwandlung, meist von organischen Verbindungen (Biomasse), in energetisch oder stofflich nutzbare Produkte. Die Umwandlung erfolgt durch Organismen, meist Mikroorganismen, oder durch isolierte Enzyme oder Enzymsysteme (Stoffwechselwege). Es werden vor allem biotechnologische Prozesse wie die Fermentation (Biogasherstellung, Industrielle Biotechnologie) sowie die enzymatische Umwandlung angewendet. Auch in Anwendungen, die nicht oder nicht eindeutig der Biotechnologie zuzuordnen sind, findet Biokonversation statt, wie z. B. beim Backen von Brot oder der Sauerkrautherstellung (Ethanol- und Milchsäuregärung). Die ersten Anwendungen von Biokonversionen durch den Menschen fanden bereits vor Jahrtausenden statt. So wurde bereits früh die Ethanolgärung zur Bier- und Weinherstellung und die Milchsäuregärung z. B. zur Konservierung von Milch durch Ansäuerung (Joghurt, Kefir) genutzt. Bei diesen Anwendungen werden Mikroorganismen (Hefen, Bakterien) verwendet, die organische Verbindungen (überwiegend Zucker) vor allem für die Energiebereitstellung (Katabolismus) umsetzen. Da diese Umsetzung unter anaeroben (sauerstofffreien) Bedingungen oder durch anaerobe Organismen stattfinden, erfolgt keine vollständige Umsetzung der organischen Verbindungen (vor allem zu CO2 und H2O), sondern zu organischen Verbindungen, wie Ethanol (Alkohol) und Milchsäure.[2] Nicht nur in der Lebensmittelindustrie, sondern auch für die stoffliche und energetische Anwendung, wie z. B. als Rohstoff zur Biokunststoffherstellung (Polylactide aus Milchsäure) oder Biokraftstoff (z. B. sogenanntes Bioethanol als Benzinersatz oder -beimischung) findet eine Biokonversation sogenannter nachwachsender Rohstoffe statt. Viele weitere Produkte werden nach diesem Prinzip gewonnen: Aceton die Propandiole: 1,2-Propandiol und 1,3-Propandiol Carbonsäuren wie Essigsäure (Acetat), Bernsteinsäure (Succinat)[3] und Milchsäure (Lactat) Biogas Die Biokonversion spielt eine wichtige Rolle in vielen technischen Verfahren. Sie ermöglicht die Erzeugung von Verbindungen, die mit anderen Methoden nicht synthetisierbar sind. In der chemischen Industrie werden gelegentlich chemische Verfahren auf Biokonversion (biochemische Verfahren) umgestellt, da diese oft weniger extreme Bedingungen benötigt und so Energie und Chemikalien eingespart werden können. Bei der Nutzbarmachung von nachwachsenden Rohstoffen kommen klassische und neue Verfahren zur Anwendung. Große Mengen Ethanol werden aus Zucker und Stärke gewonnen. Durch neue Verfahren der Biokonversion sollen bisher nicht als Treibstoff nutzbare Anteile der Biomasse, wie das lignocellulosehaltige Stroh und Holz, als Cellulose-Ethanol oder Cellulose-Butanol erschlossen werden. Ein weiterer Ansatz ist die Synthesegas-Fermentation, bei der Biomasse über eine Biomassevergasung in Synthesegas umgewandelt und anschließend in einer Fermentation in nutzbare Alkohole und andere Chemikalien umgewandelt. Da Cellulose einen großen Anteil der Biomasse ausmacht, bietet sie ein großes, bisher kaum genutztes Potential für die Bereitstellung von Energie und Rohstoffen.

10 Strategic collaboration
Cross-industrial collaborations in the area of biofuels (and biopolymers) indicate a convergence. Agricultural company Oil/chemical company Collaboration type Duration Aim and focus Strategic collaboration Since 2007 Employing lignocellulosic biomass for 2nd generation biofuels 50-50 JV (Catchlight Energy) Since 2009 Technologies for biofuels from lignocellulosic biomass (Iogen Energy) Since 2002 Production of cellulosic ethanol (already commercially available) JV Since 2010 Bioethanol from sugar cane (NatureWorks) 1997 − 2005 Production of polymers from renewable resources (e.g., PLA) Source: Preschitschek (2014).

11 Innovation process and challenges – Commercialization and market diffusion
basic research technology development predevelopment activities market introduction theory technology prototype invention innovation TIM process exploratory exploitative product & process development Emerging challenges for TIM deduced from literature exemplary topics for TIM research complex knowledge base anticipating new knowledge areas with publications and patent analysis technology foresight dynamic capabilities to adapt to changing environments open innovation value chain / discipline crossing technology development process of technology convergence technology transfer (academia-industry) collaborations across different subsectors cross-industry innovation convergence of value chains commercialization and market diffusion technology adoption and diffusion (in B2B) technology acceptance model (B2C) food technology/raw material neophobia Source: Golembiewski, Sick, Bröring, S. (2015): The emerging research landscape on bioeconomy: What has been done so far and what is essential from a technology and innovation management perspective?, Innovative Food Science and Technology 03/2015.

12 The importance of societal acceptance, complementarities, new standards, competitive technologies and the oil price… Consumer acceptance and communication: E10 in Germany Competitive technologies: Fracking Complementarities in linked industry sectors: Flex Fuel Vehicles in Brazil Future development of crude oil price

13 Conclusion and implications
Current evolution of the bioeconomy concept No common understanding of the concept Evolution still on a strategic level Missing broader picture approach Main challenges in bioeconomy research New, complex knowledge base Cross-chain technology development Commercialization & market diffusion Future implementation of the bioeconomy concept More bioeconomy specific studies along the 3 challenges Contingency based approach Modification of TIM methods and concepts

14 Econ-BioSC: Biomass flows and technological innovation in the bioeconomy: A global scenario analysis
Roadmapping of innovations for biomass production and processing Societal acceptance Emergence of new value chains Thomson Innovation. We thank Thomson Reuters for providing a free trial access. Sources: Modeling of effects of changes in biomass trade patterns on socio-economic and environmental indicators (e.g. employment, biodiversity)

15 Thank you very much… for your attention! Dr. Nina Preschitschek
University of Bonn Chair for Technology and Innovation Management in Agribusiness Meckenheimer Allee 174 D Bonn

16 Back up

17 Turnover of biomass in food and bio-based products in Europe
Source: Jong et al. (2012): Product developments in the bio-based chemicals arena.

18 Global biomass flows: Source: Golden & Handfield (2014): Why biobased? Opportunities in the Emerging Bioeconomy? Washington.


Download ppt "Global biomass flows in the emerging bioeconomy: A view on the challenges from a technology and innovation management perspective Prof. Dr."

Similar presentations


Ads by Google