Presentation is loading. Please wait.

Presentation is loading. Please wait.

MAGNETOELEKTRONIKA przykłady zastosowań T. Stobiecki Katedra Elektroniki AGH 1 wykład 11.X.2004.

Similar presentations


Presentation on theme: "MAGNETOELEKTRONIKA przykłady zastosowań T. Stobiecki Katedra Elektroniki AGH 1 wykład 11.X.2004."— Presentation transcript:

1 MAGNETOELEKTRONIKA przykłady zastosowań T. Stobiecki Katedra Elektroniki AGH 1 wykład 11.X.2004

2 Magnetoelektronika Bio-sensor (G. Reiss, et al. Univ. of Bielefeld) Cienka warstwa w bezinwazyjnej chirurgii (K. Ishiyama, et al. Research Institute of Electrical Communication,Tohoku University) Nowości - magnetic recording Magnetoresistive logic systems Nasz udział

3 Special applications Increased sensitivity by lock-in technique, uncovered references, layout-Optimization possible: single molecule detection Signal prop. Number of Beads R H Vertical magnetic field induces dipol field of bead Detection by GMR / TMR Sensor Special applications : - Bio-Chip

4 GMR (Giant MagnetoResistance) TMR (Tunnel MagnetoResistance)  detection of single beads / molecules Fixed DNA single strand XMR Sensor 1) Immobilisation of target molecules Si- Substrate Haftschicht S magnetic bead, coated with Streptavidin, binds to a selected molecule N 3) Hybridisation with beads and detection with XMR sensor XMR sensor detects stray field hybridized DNA 2) Hybridisation of the probe molecules Biotin Detection: Magnetoresistive biochip sensor IEEE Trans. Magn., (2002), ICM’03

5 Biochip for DNA analysis Loading of the chip with single stranded DNA molecules Hybridization with 5'- biotinylated, single stranded DNA or RNA probes Addition of magnetic beads, coated with Streptavidin, binding to Biotin Detection of the beads with XMR sensor 1 2 3 4 Detection: GMR sensor Specific binding of DNA 20 µm negative probe (100 ng/µl salmon sperm) positive probe (10 ng/µl PCR)

6 Special applications 0° 90° 0° 90° Characteristic Design Tunnelelement I oben I unten U oben U unten -50-40-30-20-10010203040 50 0 2 4 6 8 10 12 14 16 18 20 22 TMR-Amplitude in % Feld in Oe GMR TMR

7 Special applications 77 µV102 µV267 µV284 µV557 µV Signal Sensor coverage 1) 5 %2) 6 %3) 20 %4) 23 %5) 40 % Ref 1 - Sensor 3 Ref 1 - Ref 2 DC-measurements with Bangs 0.8 µm-beads mit beads ohne beads

8 Special applications DC-measurements with Bangs 0.8 µm-beads J. Schotter, P.B. Kamp, A. Becker, A. Pühler, D. Brinkmann, W. Schepper, H. Brückl, G. Reiss: A Biochip based on Magnetoresistive Sensors, IEEE Trans. Magnet., 2002

9 TMR = Tunneling MagnetoResistance 5 nm hard magnetic layer sense layer MnIr CoFe Al 2 O 3 NiFe DC-measurement, Bangs 0.8 µm Beads parallel Bias-Field of -6.4 Oe -100-80-60-40-20020406080100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 TMR Amplitude (%) perpendicular field (Oe) ~5 % coverage 50 µm TMR Biochip Sensor: 2x2 µm 2 elements T=300K T=10K Detection: TMR sensor

10 Advantages of MAGNETIC micro-machine Wireless operation Simple structure Ways to supply energy –F = M (dH/dx) →T = M H sin  –Magnetostriction –V = d  /dt K.I.Arai, W.Sugawara, K.Ishiyama, T.Honda, M.Yamaguchi, “Fabrication of Small Flying Machines Using Magnetic Thin Films,” IEEE Trans. Mag., vol.31, No.6, pp.3758-3760 (1995). Flying machine

11 0 Oe 150 Oe 300 Oe Bending by DC magnetic field Rotation by rotating magnetic field Two principles to move

12 Lower invasive surgery What is the challenge to obtain the medical robots? →Wireless energy supply

13 Spiral-type Magnetic Micro-Machine Rotational magnetic field Thrust (swimming direction) Magnetization

14 Controlling the swimming direction STARTGOAL STARTGOAL Field rotation plane

15 3D coil-system and controller

16 Very small machine: 0.3mm 

17 Synchronized swimming of small machine (0.3mm  )

18 Miniaturization of the machine Tungsten wire : 20  m  Machine diameter : 0.15mm NdFeB : sputtered

19 Burrowing Machine Driven by Magnetic Torque Rotational Magnetic Field: 150 Oe, 5 Hz The machine can burrow into organismal tissue. Machine

20 HDD Areal Density Perspective

21

22

23 Antyferromagnetically coupled AFC media

24

25 Heat Assisted Magnetic Recording (HAMR) Co/Pt multilayers by laser heat treatmnet anisotropy enhancement lower coercivity.

26 jxjx jyjy logic input : magnetic field, logic output : voltage / current clock line word line V out Special applications: Magnetoresistive logic „Traditional applications“: Sensors (Car, Automatization) Magnetic Random Access Memory Special : - Magnetoresistive logic: The fundamental logic gate: Advantage: Field programmable, Logic function can be changed - Reconfigurable computing

27 Spin logic setup (7 mask e-beam process) 20µm 1mm Special applications: Magnetoresistive logic

28 Switching by current lines 2 ellipses, 0.28µm 2, serially connected  H offset = -60 Oe TMR: 20% @ 100mV (1/2 of single ellipse) Special applications: Magnetoresistive logic

29 Masse IoIo IoIo V out j1j1 j2j2 j3j3 j4j4 TE4TE3TE2TE1 Steuerleitungen Lese- leitungen R. Richter, L. Bär, J. Wecker, G. Reiss: Nonvolatile programmable spin-logic for reconfigurable computing, Appl. Phys. Lett., 80 (2002) 1291

30 Special applications: Magnetoresistive logic Programmed AND : Clocked operation

31 Nasz udział http://layer.uci.agh.edu.pl/maglay/podstrony/konfer/


Download ppt "MAGNETOELEKTRONIKA przykłady zastosowań T. Stobiecki Katedra Elektroniki AGH 1 wykład 11.X.2004."

Similar presentations


Ads by Google