Download presentation
Presentation is loading. Please wait.
1
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 30 Numerical Integration & Differentiation
2
In Summary Newton-Cotes Formulas Replace a complicated function or tabulated data with an approximating function that is easy to integrate
3
In Summary Also by piecewise approximation
4
Closed/Open Forms CLOSEDOPEN
5
Trapezoidal Rule Linear Interpolation
6
Trapezoidal Rule Multiple Application
8
xa=x o x1x1 x2x2 …x n-1 b=x n f(x)f(x 0 )f(x 1 )f(x 2 )f(x n-1 )f(x n )
9
Simpson’s 1/3 Rule Quadratic Interpolation
10
Simpson’s 3/8 Rule Cubic Interpolation
11
Gauss Quadrature x1x1 x2x2
12
General Case Gauss Method calculates pairs of wi, xi for the Integration limits -1,1 For Other Integration Limits Use Transformation
13
Gauss Quadrature For x g =-1, x=a For x g =1, x=b
14
Gauss Quadrature
16
PointsWeighting Factors wi Function Arguments Error 2W0=1.0X0=-0.577350269 F (4) ( ) W1=1.0X1= 0.577350269 3W0=0.5555556X0=-0.77459669 F (6) ( ) W1=0.8888888X1=0.0 W2=0.5555556X2=0.77459669
17
Gaussian Points PointsWeighting Factors wi Function Arguments Error 4W 0 =0.3478548X0=-0.861136312 F (8) ( ) W 1 =0.6521452X1=-339981044 W 2 =0.6521452X2=- 339981044 W 3 =0.3478548X3=0.861136312
18
Gaussian Quadrature Not a good method if function is not available
19
Fig 23.1 FORWARD FINITE DIFFERENCE
20
Fig 23.2 BACKWARD FINITE DIFFERENCE
21
Fig 23.3 CENTERED FINITE DIFFERENCE
22
Data with Errors
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.