Presentation is loading. Please wait.

Presentation is loading. Please wait.

Investigations of Wind Tunnel Size and Shock Strength on Shock Boundary Layer Interactions John A. Benek, Ph.D. Casimir J. Suchyta III, Ph.D. Rick Graves,

Similar presentations


Presentation on theme: "Investigations of Wind Tunnel Size and Shock Strength on Shock Boundary Layer Interactions John A. Benek, Ph.D. Casimir J. Suchyta III, Ph.D. Rick Graves,"— Presentation transcript:

1 Investigations of Wind Tunnel Size and Shock Strength on Shock Boundary Layer Interactions John A. Benek, Ph.D. Casimir J. Suchyta III, Ph.D. Rick Graves, Ph.D. April 2015

2 Overview  Hypothesis – Dominant Physics  Modeling and Simulation  Future Work 2 Cleared for public release 88ABW-2015-1433

3 SBLI Flow Phenomena 3 This is how we usually think of SBLI. Incident Oblique, 2D shock wave Fin on a PlateSidewall shock, Corner Flow Cleared for public release 88ABW-2015-1433

4 SBLI as Function of Tunnel W/H 4 Small W/H Flow Regions Separated Flow Incident Shock Impingement Line Moderate W/H Separated Flow Flow Regions Large W/H Flow Regions Separated Flow Incident Shock Impingement Line Sidewall separation sets up a shock system that smears the pressure gradient Cleared for public release 88ABW-2015-1433

5 Dominant Physics With decreasing tunnel width  Corner interactions make up larger portion of flow  Corner shocks change the adverse pressure gradient Affect the character of the SBLI and separated regions  Magnitude of effects depend on size of boundary layer Hypothesis: Separation zone is function of BL thickness & tunnel width 5 Cleared for public release 88ABW-2015-1433

6 Variation of separation with W Cleared for public release 88ABW-2015-1433 6

7 Modeling and Simulation 7 Cleared for public release 88ABW-2015-1433 Modeling and Simulation

8 Computational Domain & BC Hyperbolic tangent stretching function is used to smoothly stretch the grid. 8 Width:Height Ratio NxNyNzCells (10 6 ) 2:1100120140180 1:1.125100120130160 1:41001201 40 Grid spacingMinMax x direction0.000830.0083 y, z direction0.000010.0050 Height is constant Cleared for public release 88ABW-2015-1433

9 Code and Turbulence Models  OVERFLOW: VERSION 2.2g 16 August 2013 Non-equilibrium k-  (Hamlington and Dahm) model Quadratic Constitutive Relation (QCR) CNL1=0.3 9 Standard k-  Non-equilibrium k-  Cleared for public release 88ABW-2015-1433 QCR

10 Solver and Flow Parameters 2 nd order Central difference flux scheme (IRHS=0 FSO=2) DDADI algorithm (ILHS=3) 2 nd order HLLC flux scheme (IRHS=5 FSO=2) SSOR algorithm (ILHS=6) Local time stepping (ITIME=1) Koren limiter (ILIMIT=1 ) 10 Cleared for public release 88ABW-2015-1433

11 Flow Parameters Parameter Value R e /m16x10 6  1.0 p1p1 0.71 T1T1 288 K M1M1 2.52.72.9  810.513810.513810.513  30.01 32.33 34.82 28.0230.2932.7226.3528.5930.96 M2M2 2.17 2.07 1.96 2.342.232.122.522.402.28     1.43 1.58 1.74 1.461.621.791.491.671.84 p2p2 1.18 1.37 1.58 1.221.431.661.261.491.73 T 2 /T 1 1.16 1.21 1.27 1.171.231.291.181.251.31 11 Cleared for public release 88ABW-2015-1433

12 Corner Flow 12 Cleared for public release 88ABW-2015-1433 hllcQCR Mach = 2.5 empty tunnel, x = 0

13 M=2.5 Wedge=8 W/H=2 RL=2.5 13 hllc QCR Cleared for public release 88ABW-2015-1433 cent

14 M=2.5 Wedge=8 W/H=2 RL=5.5 14 hllc With QCR Cleared for public release 88ABW-2015-1433 cent

15 M=2.9 Wedge=13 W/H=2 RL=2.5 15 hllc QCR Cleared for public release 88ABW-2015-1433 cent

16 M=2.9 Wedge=13 W/H=2 RL=5.5 16 hllc QCR Cleared for public release 88ABW-2015-1433 cent

17 M=2.5 Wedge=8 W/H=1/4 RL=2.5 17 hllc RL=2.5 Cleared for public release 88ABW-2015-1433 QCR cent

18 M=2.5 Wedge=8 W/H=1/4 RL=5.5 18 RL=5.5 Cleared for public release 88ABW-2015-1433 hllc QCR cent

19 M=2.9 Wedge=13 W/H=1/4 RL=2.5 19 Cleared for public release 88ABW-2015-1433 RL=2.5 hllc QCR cent

20 M=2.9 Wedge=13 W/H=1/4 RL=5.5 20 Cleared for public release 88ABW-2015-1433 RL=5.5 cent hllc QCR

21 M=2.5 Wedge=8 W/H=2 RL=2.5 21 Inviscid flow incident shock impingement line Cleared for public release 88ABW-2015-1433 x=0 hllc QCR x=0 x=-1/2

22 M=2.5 Wedge=8 W/H=1/4 RL=2.5 22 Cleared for public release 88ABW-2015-1433 x=0 hllc QCR x=0 x=-1/2

23 M=2.9 Wedge=13 W/H=2 RL=2.5 23 Cleared for public release 88ABW-2015-1433 x=0 hllc QCR x=0 x=-1/2

24 M=2.9 Wedge=13 W/H=1/4 RL=2.5 24 Cleared for public release 88ABW-2015-1433 x=0 hllc QCR x=0 x=-1/2

25 M=2.5 Wedge=8 W/H=2 RL=2.5 25 Isosurface ∂ x  planes ∂ x  hllc QCR Cleared for public release 88ABW-2015-1433

26 M=2.5 Wedge=8 W/H=1/4 RL=2.5 26 Isosurface ∂ x  planes ∂ x  hllc QCR Cleared for public release 88ABW-2015-1433

27 M=2.9 Wedge=13 W/H=2 RL=2.5 27 Isosurface ∂ x  planes ∂ x  hllc QCR Cleared for public release 88ABW-2015-1433

28 M=2.9 Wedge=13 W/H=1/4 RL=2.5 28 Isosurface ∂ x  planes ∂ x  hllc QCR Cleared for public release 88ABW-2015-1433

29 Summary M=2.5 29 Cleared for public release 88ABW-2015-1433 xx

30 Summary M=2.9 30 xx Cleared for public release 88ABW-2015-1433

31 Design of Experiments  Determine the range of input parameters and the outputs to be modeled.  Create a list (matrix) of simulations to run.  Run the simulations (this is the long part).  Fill in matrix with outputs.  Run software to determine sensitivities.  Create response surface. 31 Cleared for public release 88ABW-2015-1433

32 Boundary Layer Thickness 32 Cleared for public release 88ABW-2015-1433 MachW/HRL 2.54.05.5 2.5 2:10.032330.06208 1:1.1250.04918 1:40.036160.06876 2.7 2:10.04711 1:1.1250.031810.047680.06252 1:40.05232 2.9 2:10.031230.06179 1:1.1250.04695 1:40.034710.06860

33 DoE Boundary Layer Thickness  Three input parameters Mach number Tunnel Width Run Length, RL  Most sensitive to RL  Least sensitive to Mach number  Response surface is a good fit to data 33 Cleared for public release 88ABW-2015-1433

34 DoE Separation Length  Four input parameter Mach number Wedge angle,  Tunnel Width Run Length, RL  Exploring polynomial response surfaces 34 Cleared for public release 88ABW-2015-1433

35 Shock Strength 35 Cleared for public release 88ABW-2015-1433 MM SW/HRL 2.54.05.5 2.5 8 0.6574 2:10.025440.03341 1:1.1250.04427 1:40.050700.00000 2.7 10.5 0.9970 2:10.05254 1:1.1250.048600.122680.16886 1:40.12302 2.9 13 1.4330 2:10.116850.09616 1:1.1250.27706 1:40.156500.00000 S = (M perp 2 – 1)*2*  /(1+  )

36 Future Work  Compare Dahm to k-   Further investigation with DoE  Fill in our Summary curves  Effect on interactions of  Height  Acquire  x/  vs  /W from literature and compare with computations  Experiments in Cambridge corner flow suction/blowing 36 Cleared for public release 88ABW-2015-1433


Download ppt "Investigations of Wind Tunnel Size and Shock Strength on Shock Boundary Layer Interactions John A. Benek, Ph.D. Casimir J. Suchyta III, Ph.D. Rick Graves,"

Similar presentations


Ads by Google