Presentation is loading. Please wait.

Presentation is loading. Please wait.

Recommendations Based on Speech Classification

Similar presentations


Presentation on theme: "Recommendations Based on Speech Classification"— Presentation transcript:

1 Recommendations Based on Speech Classification
(and examples of what recommender systems can learn from signal processing) Christian Müller German Research Center for Artificial Intelligence International Computer Science Institute, Berkeley, CA

2 Recommendations Based on Speech Classification
Overview Speech as a source of information for non-intrusive user modeling Speech/signal processing Take-away messages Recommendations Based on Speech Classification Vocal aging -> features for speaker age recognition GMM/SVM supervector approach for acoustic speech features Detection task and pseudo-NIST evaluation procedure Rank and polynomial rank normalization Knowledge-driven feature selection Classification methods for independent “bag of observations” features Valid application-independent evaluation Feature space warping normalization (and examples of what recommender systems can learn from signal processing) Conclusions Christian Müller

3 Speech as a Source for Non-Intrusive UM
Now it’s time to get to gate 38. Information about the user user model adaptive speech dialog system provides recommendations (e.g. a different route to the gate) adapts it's dialog behavior (e.g. detailed map with shops vs. arrows) A speaker classification ? speech = sensor inference from sensors (not intrusive) B explicit statement (intrusive) Christian Müller

4 Speaker Classification Systems
Cognitive Load Best Research Paper Award UM 2001 S y s t em Age and Gender Voice Award 2007 Telekom live operation 2009 Language 14 languages + dialects NIST evaluation 2007 Audio segment (telephone quality) Identity Project with BKA 2009 NIST* Evaluation 2008 Acoustic Events Project with VW 2008 Interspeech 2008 Christian Müller

5 Recommendations Based on Speech Classification
products media services actions strategies age gender emotions language dialect accent identity acoustic events Christian Müller

6 Product Recommendations Based on Age and Gender
Christian Müller

7 Product Recommendations Based on Age and Gender
AM Michael Feld and Christian Müller. Speaker Classification for Mobile Devices. In Proceedings of the 2nd IEEE International Interdisciplinary Conference on Portable Information Devices (Portable 2008). 2008 YF Christian Müller

8 How can you find features for building your models by explicitly studying the underlying phenomena?
Proposing Knowledge-driven feature select the example of features for speaker age recognition Christian Müller

9 Speaker Classification as an Interdisciplinary Area of Research
How can the age (and the gender) of a speaker be recognized automatically ? Which are the manifestations of age (and gender) in the speaker’s voice and speaking style ? Which are the requirements of a speaker classification system and how can they be solved on the implementation layer ? Speech Technology / Artificial Intelligence Phonetics Voice Pathology Speaker Classification Software- Technology Christian Müller

10 Impact of Aging on the Human Speech Production
Speech breathing effects: lower expirational volume more speech pauses lower amplitude thorax stiffer Wir kommen nun zu Gliederungspunkt zwei: den empirischen Studien. lungs lighter less elastic lower position Christian Müller

11 Impact of Aging on the Human Speech Production
laryngal area effects: rise of fundamental frequency (in men) reduced voice quality larynx calcification and ossification vocal folds loss of tissue stiffening Wir kommen nun zu Gliederungspunkt zwei: den empirischen Studien. Christian Müller

12 Impact of Aging on the Human Speech Production
supralaryngal area facial bones and muscles degeneration reduced elasticity effects: imprecise articulation for example vowel centralization Wir kommen nun zu Gliederungspunkt zwei: den empirischen Studien. Christian Müller

13 Impact of Aging on the Human Speech Production
neurological effects loss of tissue in the cortex reduced performance of the neuronal transmitters effects: reduced articulation rate defective coordination between the articulators vowel centralization Wir kommen nun zu Gliederungspunkt zwei: den empirischen Studien. Christian Müller

14 Development of F0 in Men / Women
170 160 150 140 130 120 110 100 90 20 50 60 70 80 40 30 F0 (Hz) men only non-smokers women smokers and non-smokers Linville (2001) age in years Christian Müller

15 Age Classes YF Female Male Children Youth AF Adults SF SM Seniors CF
CM Children <= 13 years YF YM Youth years AM AF Adults years SF SM Seniors >= 65 Jahren Christian Müller

16 Age Classes YF Female Male Children Youth AF Adults SF SM Seniors CF
CM Children <= 13 years YF YM Youth years AM AF Adults years SF SM Seniors >= 65 Jahren Christian Müller

17 Features voice quality articulation rate speech pauses
fundamental frequency (pitch) mean pitch_mean standard deviation pitch_stddev min, max and difference pitch_min / pitch_max / pitch_diff voice quality shimmer shim_l / shim_ldb / shim_apq3 / shim_apq11 / shim_ddp jitter jitt_l / jitt_la / jitt_rap / jitt_ppq / jitt_ddp harmonics-to-noise-ratio harm_mean / harm_stddev Die untersuchten Stimm- und Sprechverhaltensmerkmale waren die folgenden: erstens die Grundfrequenz oder Pitch mit den statistischen Derivaten Mittelwert, Standardabweichung sowie Minimal, Maximalwert und die Differenz von beiden. Anhand der Standardabweichung können globale Frequenzschwankungen gemessen werden, was in der Regel als Tremor bezeichnet wird. Minimal und Maximalwert lassen Rückschlüssen darauf zu, welchen Frequenzumfang die Stimme des Sprechers hat. Desweiteren wurden verschiedene Maße der Stimmqualität untersucht wie Shimmer – Mikrovariationen der F0-Amplitude und Jitter – Mikrovariationen der F0-Frequenz. Von beiden wurden verschiedenen Maße untersucht, die sich vor allen Dingen dahingehen unterscheiden, ob sie die relativen oder absulten Perturbationen messen. Als ein weiteres Maß der Stimmqualität wurde die Harmonics-to-Noise-Ratio untersucht, also das Verhältnis von stimmhaften und stimmlosen Anteilen im Signal. Weitere Merkmale waren die Intensität sowie die Artikulationsgeschwindigkeit und die Anzahl und Dauer der Sprecherpausen. Artikulationsgeschwindigkeit und Sprechpausen werden Sprechverhaltensmerkmale genannt, wähend die übrigen als Stimmmerkmale bezeichnet werden. articulation rate ar_rate speech pauses pause_num / pause_dur Christian Müller

18 Features voice voice quality articulation rate speaking style
fundamental frequency (pitch) mean standard deviation min, max and difference voice voice quality shimmer jitter harmonics-to-noise-ratio Die untersuchten Stimm- und Sprechverhaltensmerkmale waren die folgenden: erstens die Grundfrequenz oder Pitch mit den statistischen Derivaten Mittelwert, Standardabweichung sowie Minimal, Maximalwert und die Differenz von beiden. Anhand der Standardabweichung können globale Frequenzschwankungen gemessen werden, was in der Regel als Tremor bezeichnet wird. Minimal und Maximalwert lassen Rückschlüssen darauf zu, welchen Frequenzumfang die Stimme des Sprechers hat. Desweiteren wurden verschiedene Maße der Stimmqualität untersucht wie Shimmer – Mikrovariationen der F0-Amplitude und Jitter – Mikrovariationen der F0-Frequenz. Von beiden wurden verschiedenen Maße untersucht, die sich vor allen Dingen dahingehen unterscheiden, ob sie die relativen oder absulten Perturbationen messen. Als ein weiteres Maß der Stimmqualität wurde die Harmonics-to-Noise-Ratio untersucht, also das Verhältnis von stimmhaften und stimmlosen Anteilen im Signal. Weitere Merkmale waren die Intensität sowie die Artikulationsgeschwindigkeit und die Anzahl und Dauer der Sprecherpausen. Artikulationsgeschwindigkeit und Sprechpausen werden Sprechverhaltensmerkmale genannt, wähend die übrigen als Stimmmerkmale bezeichnet werden. articulation rate speaking style speech pauses Christian Müller

19 Example Results high jitter value = low voice quality
CF CM YF YM AF AM SF SM C_YF AF SF YM_AM_SM high jitter value = low voice quality CF CM YF YM AF AM SF SM fundamental frequency (F0) Christian Müller. Zweistufige kontextsensitive Sprecherklassifikation am Beispiel von Alter und Geschlecht [Two-layered Context-Sensitive Speaker Classification on the Example of Age and Gender]. AKA, Berlin, 2006 speech pauses Christian Müller

20 Hiearchical Feature Model
High-level features (learned characteristics) semantics ? dialog d e c b a A: B: ideloect <s> how shall I say this <c> <s> yeah I know... phonetics /S/ /oU/ /m/ /i:/ /D/ /&/ /m/ // /n/ /i:/ ... prosody spectrum Low-level features (physical characterstics) Christian Müller

21 How can your features be modeled assuming that they
are multi-dimentional represent repeating observations of the same kind can be assumed to be independent (“bag” of observations) Proposing the GMM/SVM Supervector Approach on the example of frame-by-frame acoustic features Christian Müller

22 General Classification Scheme
x1 x2 y1 wji -1 0.5 0.7 -0,4 y2 1 -1.5 zk wkj e.g. channel compensation (not addressed in this talk) Preprocessing support-vector machines multilayer perceptron networks Feature Extraction Classification Fusion Top-Down- Knowledge Christian Müller

23 Modeling Acoustics and Prosodics
semantics ? dialog d e c b a A: B: ideloect no ASR <s> how shall I say this <c> <s> yeah I know... phonetics /S/ /oU/ /m/ /i:/ /D/ /&/ /m/ // /n/ /i:/ ... prosody spectrum Christian Müller

24 Generative Approach: Gaussian Mixture Model (GMM)
training “emergency vehicle” feature extraction probability density “emergencyvehicle” model frame of speech test feature extraction “emergencyvehicle” model ? avg likelihood over all frames for class “emergency vehicle” Christian Müller

25 Generative Approach: Gaussian Mixture Model (GMM)
test ? feature extraction “emergencyvehicle” model avg. log likelihood ratio over all frames for class “emergency vehicle” frame of speech back- ground model Christian Müller

26 A Mixture of Gaussians Means, variances, and mixtures weights are optimized in training Black line = mixture of 3 Gaussians Christian Müller

27 Discriminative Method: Support Vector Machine (SVM)
training “em. vehic.” (1) feature extraction “em. vehic.” model “not em. vehic.” (-1) Features are transformed into higher-dimensional space where problem is linear Discriminating hyper plane is learned using linear regression Trade-off between training error and width of margin Model is stored in form of “support vectors” (data points on the margin) Christian Müller

28 Discriminative Method: Support Vector Machine (SVM)
test ? feature extraction score (distance to hyper plane) Discriminative methods have shown to be superior to generative methods for similar tasks Features vectors have to be of the same lengths (sensitive to variable segment lengths) Solutions: feature statistics calculated over the entire utterance fixes portion of the segment sequential kernels Christian Müller

29 GMM/SVM Supervector Approach
feature extraction Gaussian means (MAP adapted) Combines discriminative power of SVMs with length independency of GMMs Very successful with similar tasks such as speaker recognition GMM is trained using MAP adaptation Christian Müller

30 Evaluation Results Christian Müller
Christian Müller, Joan-Isaac Biel, Edward Kim, and Daniel Rosario, “Speech-overlapped Acoustic Event Detection for Automotive Applications,” in Proceedings of the Interspeech 2008, Brisbane, Australia, 2008. Christian Müller

31 How can you evaluate your multi-class models independently from the given application?
How can you establish a appropriate evaluation in order procedure to obtain valid results? Proposing the detection task and the “pseudo NIST” evaluation procedure on the example of acoustic event detection and speaker age recognition. Christian Müller

32 Background With multi-class recognition problems, many test/analyzing methods are very application specific. e.g. confusion matrices. we want a method that allows results to be generalized across a large set of applications. With home-grown databases, parameter tuning on the evaluation set often compromises the validity of the results/inferences. we want a fair “one shot” evaluation. Christian Müller

33 The Detection Task Given
system yes , emergeny vehicle ? Given a speech segment (s) and an acoustic event to be detected (target event, ET ) the task is to decide whether ET is present in s (yes or no) the system's output shall also contains a score indicating its confidence with more positive scores indicating greater confidence. Christian Müller

34 Terminology Segment class Target Trial
e.g. segment event, segment age-class. ground truth (not known). Target the hypothesized class. Trial a combination of segment and target. Christian Müller

35 Evaluation system yes no no no yes no emergency vehicle ? music ? talking ? laughing ? phone ? no event ? The system performance is evaluated by presenting it with a set of trials. Each test segment is used for multiple trials. The absence of all of all targets is explicitly included. Christian Müller

36 Type of Errors system system “MISS” “FALSE ALARM” no yes
segment “em. vehic.” system no “MISS” target “em. vehic” ? segment “em. vehic” system yes “FALSE ALARM” target “phone” ? Christian Müller

37 Decision-Error Tradeoff
misses “equal error rate” false alarms Selecting an operating point (decision threshold) along the dotted line trades misses off false alarms. Optimal operating point is application dependent. Low false alarm rates are desirable for most applications. Christian Müller

38 Decision Cost Function
C(ET, EN) = CMiss · PTarget · PMiss(ET) + CFA · (1-PTarget) · PFA (ET,EN) where ET and EN are the target and non-target events, and CMiss, CFA and PTarget are application model parameters. The application parameters for EER are: CMiss = CFA = 1 and PTarget = 0.5 Weighted sum of misses and false alarms using variable costs and priors. Application model parameters are selected according to the application. Christian Müller

39 Example DET-Plot miss probability false alarm probability
Christian Müller, Joan-Isaac Biel, Edward Kim, and Daniel Rosario, “Speech-overlapped Acoustic Event Detection for Automotive Applications,” in Proceedings of the Interspeech 2008, Brisbane, Australia, 2008. Christian Müller

40 Example Cost Chart COSTS: (At, An) An C YF YM AF AM SF SM -- 0.220 0.092 0.145 0.083 0.133 0.069 0.166 0.081 0.201 0.080 0.198 0.070 0.076 0.084 0.130 0.203 0.108 0.188 0.088 0.161 0.110 0.095 0.219 0.082 0.064 0.254 0.139 0.105 0.228 0.096 0.150 0.100 0.249 0.091 0.065 0.085 0.238 0.117 0.246 0.118 Avg Cost (At) 0.146 0.164 0.147 0.122 Avg Cost Acoustic GMM/SVM Supervector system on 7-class age task Christian Müller

41 Pseudo NIST Evaluation Procedure
ERL provided development and evaluation data as representative as possible for the application. Three months before the evaluation, ICSI was provided with the development data. At a pre-determined date, the blind evaluation data was provided to ICSI for processing. The system's output was submitted to ERL in NIST format. ERL downloaded the scoring software from NIST’s website, made the necessary modifications due to the changes in the labels. ERL ran the software on the submitted system output. The results were then disclosed to ICSI along with the keys (truth) for further analysis. --> Fair “one-shot” evaluation, no parameter tuning on the evaluation set. Christian Müller

42 How can you normalize your features in order to obtain a uniform scale and a unifom distribution?
Proposing rank normalization respectively polynomial rank normalization Christian Müller

43 Background Fundamental frequency (pitch): 75-200 Hz
Jitter: PPQ --> implicit feature weighing Christian Müller

44 Mean/Variance Normalization
1 ai = vi − min(vi) max(vi) − min(vi) -1 1 uniform scale non-uniform distribution Christian Müller

45 Rank-Normalization create ordered list of values using bg data
feature ... background model ... normalized feature ... ... ... create ordered list of values using bg data rank = position in list / number of values no occurrence mapped to 0 ... Christian Müller

46 Rank Normalization 1 -1 1 -1 1 (+) uniform distribution
(-) large three dimensional lookup tables (-) linear interpolation for unseen values larger values ? smaller values ? Christian Müller

47 Polynomial Rank Normalization
use ranks to train a polynomial apply polynomial instead of look-up tables better interpolation no need to store look-up tables Christian Müller and Joan-Isaac Biel. The ICSI 2007 Language Recognition System. In Proceedings of the Odyssey 2008 Workshop on Speaker and Language Recognition. Stellenbosch, South Africa, 2008 Christian Müller

48 Conclusions Vocal aging -> features for speaker age recognition
Speech as a source of information for non-intrusive user modeling Speech/signal processing Take-away messages Vocal aging -> features for speaker age recognition GMM/SVM supervector approach for acoustic speech features Detection task and pseudo-NIST evaluation procedure Rank and polynomial rank normalization Knowledge-driven feature selection Classification methods for independent “bag of observations” features Valid application-independent evaluation Feature space warping normalization Christian Müller

49 Thank you! Christian Müller


Download ppt "Recommendations Based on Speech Classification"

Similar presentations


Ads by Google