Presentation is loading. Please wait.

Presentation is loading. Please wait.

January 22, 2015. Protons (85 %) Nuclei (13%) Electrons/Positrons (2%) Galactic Origin α=2.7.

Similar presentations


Presentation on theme: "January 22, 2015. Protons (85 %) Nuclei (13%) Electrons/Positrons (2%) Galactic Origin α=2.7."— Presentation transcript:

1 January 22, 2015

2 Protons (85 %) Nuclei (13%) Electrons/Positrons (2%) Galactic Origin α=2.7

3

4 RESONANT INSTABILITY (Skilling 1975) RESONANT INSTABILITY (Skilling 1975) NON RESONANT INSTABILITY (Bell 2004) NON RESONANT INSTABILITY (Bell 2004) Excitation of Alfvén waves with λ ≅ r L  saturation at δB/B ≅ 1  E M < 1 PeV Purely growing waves at wavelengths λ << r L, driven by the CR current j CR  generation of power at larger spatial scales up to λ ≅ r L  larger E M

5 Current at distance R Balanc e Growth Rate e-folding Maximum Energy Cardillo, Amato & Blasi 2015 Source Spectrum

6 Escape Spectrum Shock Radius Shock Velocit y CR Current Cardillo, Amato & Blasi 2015

7 Type I m=0, k=7 Type I m=0, k=7 No sharp cut-off above E M ! No sharp cut-off above E M ! Cardillo, Amato & Blasi 2015 Type II m=2, k=9 Type II m=2, k=9 Ejecta density Medium density Shock radius k=[7,10]

8 Cardillo, Amato & Blasi 2015 Ejecta Mass ISM density Wind density ST radius Ejecta density ST time Shock radius Shock velocity

9

10 ISM WIND Type II SNR provide higher maximum energy Proportional to CR efficiency (ξ CR ) Strong dependence on shock velocity ED phase ED phase Cardillo, Amato & Blasi 2015 Observational problem!

11 B/C ratio flat steep Cardillo, Amato & Blasi 2015 Diffusion Spallation (Ptuskin 2009) Cross Section (Horandel 2007) Grammage

12 Diffusion Spallation Assumption s Variables M ej = 1 M  dM/dt= 10 -5 M  /yrs V w = 10 km/s R d = 10 kpc X(E)=k(Rg/ 3GV) -δ δ= 2.65 - p inj n d = 1 cm -3 σ sp = α(E) Α β(E) E SN = Supernova energy R = Explosion rate EMEM EMEM t0t0 t0t0 V0V0 V0V0 ξ CR Escape Cardillo, Amato & Blasi 2015 From TRACER and CREAM

13 flat steep E M = 1 PeV  Ra= 1/30 yrs ξ CR = 11% (for standard E sn =10 51 erg) E M = 1 PeV  Ra= 1/800 yrs ξ CR = 240% (!!) (for standard E sn =10 51 erg) Cardillo, Amato & Blasi 2015 E M > 1 PeV

14 E SN = 10 51 erg R= 1/30 yrs E M = 1 PeV ξ CR = 11% t 0 = 85 yrs v 0 =15.700 km/s Cardillo, Amato & Blasi 2015

15 Cardillo, Amato, Blasi, submitted

16 k=9 E SN = 2 x 10 51 erg R= 1/110 yrs E M ≅ 3.7 x 10 15 eV ξ CR ≅ 20 % t 0 ≅ 60 yrs v 0 ≅ 22.200 km/s Cardillo, Amato & Blasi 2015 k=9 E SN = 10 51 erg R= 1/15 yrs E M ≅ 507 TeV ξ CR ≅ 5.2 % t 0 ≅ 85 yrs v 0 ≅ 15.700 km/s

17 k=9 E SN = 2 x 10 51 erg R= 1/110 yrs E M ≅ 3.7 x 10 15 eV ξ CR ≅ 20 % t 0 ≅ 60 yrs v 0 ≅ 22.200 km/s Cardillo, Amato & Blasi 2015 k=9 E SN = 10 51 erg R= 1/15 yrs E M ≅ 507 TeV ξ CR ≅ 5.2 % t 0 ≅ 85 yrs v 0 ≅ 15.700 km/s Uncertainty on the data? Additional component?

18 k=7 E SN = 10 51 erg R= 1/25 yrs E M ≅ 781 TeV ξ CR ≅ 12 % t 0 ≅ 96 yrs v 0 ≅ 13.300 km/s Cardillo, Amato & Blasi 2015

19  NHR instability leads to the release of a steep power-law spectrum in the ejecta dominated phase  no sharp cut-off!  KASCADE Grande and ARGO data can be fitted with reasonable values of SN parameters.  No model that can fit both ARGO and KASCADE-Grande data  need a better data understanding with a consequent theory improvement.  Type II SNRs can accelerate particles up to the knee at very early time  detection problem.  Bell non-resonant instability predicts that very energetic SNRs can reach PeV energies.

20


Download ppt "January 22, 2015. Protons (85 %) Nuclei (13%) Electrons/Positrons (2%) Galactic Origin α=2.7."

Similar presentations


Ads by Google