Download presentation
Presentation is loading. Please wait.
Published byGeoffrey Moody Modified over 9 years ago
1
Gene regulation in cancer 11/14/07
2
Overview The hallmark of cancer is uncontrolled cell proliferation. Oncogenes code for proteins that help to regulate cell growth and differentiation. A mutation in an oncogene causes uncontrolled cell growth. Tumor suppressors suppress cell division or promote apoptosis (regulated cell-death).
3
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Signal Steroid receptor TF
4
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Signal TF Steroid receptor
5
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Signal * TF Steroid receptor
6
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Kinase Signal TF Steroid receptor Nuclear TF
7
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Kinase TF Signal Steroid receptor Nuclear TF
8
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Signal Kinase * TF Steroid receptor Nuclear TF
9
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Signal Kinase * TF Steroid receptor Nuclear TF
10
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Signal Kinase * TF Steroid receptor Nuclear TF
11
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus TF Signal Steroid receptor Nuclear TF Latent cytoplasmic TF
12
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus TF Signal Steroid receptor Nuclear TF Latent cytoplasmic TF
13
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Signal TF * Steroid receptor Nuclear TF Latent cytoplasmic TF
14
Different paths leading to transcription factor activation extra-cellular cytoplasm nucleus Signal TF * Steroid receptor Nuclear TF Latent cytoplasmic TF
15
Transcription factors in cancer Oncogenes Steroid receptors –Estrogen receptors (breast cancer) and androgen receptors (prostate cancer) Nuclear proteins –JUN Latent cytoplasmic factors –STAT Tumor suppressors p53, RB, etc.
16
Example: STAT pathway Darnell 2000
17
P53: overview Known as the “guardian of the genome” The first discovered tumor suppressor Inactivated in most types of tumors. 10,000 tumor related mutations have been identified from human to clam.
18
P53: overview Sequence-specific transcription factor (both an activator and a repressor)
19
Vousden and Lane 2007
20
(Vogelstein et al. 2000)
21
p53 pathway Oren 2003
22
Different biological outcomes
23
p53 activation Nuclear protein Activated by phosphorylation. Contain multiple phosphorylation sites.
24
Different activation of different subsets of genes. Oren 2003
25
Life and death choices of p53 How do p53 choose which set of genes to activate?
26
Life and death choices of p53 How do p53 choose which set of genes to activate? –Different modifications –Different partners –Others?
27
What genes are regulated by p53?
28
Gene expression profiling Ovarian cancer cell line (p53 is inactivated) Expression p53 by infection with adenovirus Label the DNA from the two cell lines differently and hybridize using a 2-color microarray Measure gene expression by microarray (60,000 cDNAs) at multiple time points. Monitor whether genes are activated or repressed (fold change > 2.5). Mirza et al. 2003
32
Target genes Differentially expressed genes can be due to direct or indirect regulation. How to identify direct targets? Mirza et al. 2003
33
Target genes Differentially expressed genes can be due to direct or indirect regulation. How to identify direct targets? Use known motif information, scan genome for motif sites. These sites are viewed as target genes. 294 repressed genes contain p53 motif sites; 67 activated genes contain p53 motif sites Mirza et al. 2003
34
Identifying p53 targets by CHIP-chip Cawley et al. 2004 Affymetrix tiling array chr 21 and 22 35 bp resolution on average
35
Identifying p53 targets by CHIP-chip Cawley et al. 2004 Data analysis Apply Wilcoxon rank-sum test to probes in each sliding window P-value cutoff at 10 -5 1600 p53 sites identified.
36
Cawley et al. 2004
37
Distribution of TFBS Cawley et al. 2004
38
Novel transcript related to TFBS Cawley et al. 2004
39
Novel transcript related to TFBS Cawley et al. 2004
40
Co-expression between coding and non-coding RNA Cawley et al. 2004
41
Can tiling array data be used to obtain a better motif?
42
CHIP-PET: A new method for detecting TFBS (Wei et al. 2006)
43
counts Detected 122 novel target genes.7
44
Motif finding from CHIP-PET data (Wei et al. 2006)
45
Expression profile from multiple tumors 193 tumors with p53 wild-type 58 tumors with p53 mutant Measure gene expression for each tumor tissue
46
Expression profile from multiple tumors 193 tumors with p53 wild-type 58 tumors with p53 mutant Measure gene expression for each tumor tissue Idea: For p53 target genes, differential expression should be observed.
47
Gene expression profile of p53 wild-type vs mutant tumors (Wei et al. 2006)
48
Gene expression profile of p53 wild-type vs mutant tumors (Wei et al. 2006)
49
Clinical implications
50
p53 network (Vogelstein et al. 2000)
51
Oren 2003
52
Reading List Oren 2003 –A review of p53 pathway Mirza et al. 2003 –Gene expression profile of p53 Cawley et al. 2004 –Map p53 binding sites using high resolution tiling array Wei et al. 2006 –Use CHIP-PET to map p53 binding sites, rediscovered p53 motif; linked p53 targets with gene expression profile
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.