Presentation is loading. Please wait.

Presentation is loading. Please wait.

Onset of J/  Melting in Quark- Gluon Fluid at RHIC Taku Gunji Center for Nuclear Study University of Tokyo Paper: hep-ph/0703061 Collaboration with: Hideki.

Similar presentations


Presentation on theme: "Onset of J/  Melting in Quark- Gluon Fluid at RHIC Taku Gunji Center for Nuclear Study University of Tokyo Paper: hep-ph/0703061 Collaboration with: Hideki."— Presentation transcript:

1 Onset of J/  Melting in Quark- Gluon Fluid at RHIC Taku Gunji Center for Nuclear Study University of Tokyo Paper: hep-ph/0703061 Collaboration with: Hideki Hamagaki (CNS, Univ. of Tokyo), Tetsuo Hatsuda, Tetsufumi Hirano (Phys. Dept. Univ. of Tokyo) 1 International Nuclear Physics Conference 2007@Tokyo, Japan, 2007/6/5

2 Outline Physics Motivation J/  suppression at RHIC Hydro+J/  model Results Summary and Outlook 2 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji

3 Physics Motivation Quark-Gluon-Plasma (QGP) –New state of QCD matter expected to be created at high temperature (T c = 160-190MeV). Quarkonia suppression in QGP –Color Debye Screening T.Matsui & H. Satz PLB178 416 (1986) –Suppression depends on temperature (density) and radius of QQbar system. T J/  : 1.6Tc~2.0Tc T , T  ’ : ~ 1.1Tc –Serve as the thermometer in QGP. 3 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji M.Asakawa and T.Hatsuda, PRL. 92, 012001 (2004) A. Jakovac et al. PRD 75, 014506 (2007) G.Aarts et al. arXiv:0705.2198 [hep-lat]. (Full QCD)

4 R.Rapp et al, EPJC43 (2005) 91N. Xu et al, nucl-th/0608010 total dissociation recombination total recombination dissociation J/  Suppression at RHIC Two proposed scenarios: –Gluon dissociation + recombination Dissociation by thermal gluons supplemented by the regeneration of J/  from ccbar coalescence –R. Rapp et al. [EPJC34, 91 (2005)], L. Yan et al. [PRL97,232301 (2006)], R. Thews [NPA783 301(2007)], A.Andronic et al.[nucl-th/0701079], etc 4 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji A. Adare et al. (PHENIX) nucl-ex/0611020 M. J. Leitch nucl-ex/0701021 T. Gunji (PHENIX) nucl-ex/0703004

5 J/  Suppression at RHIC Two proposed scenarios: –Sequential Melting of J/  Absence of the feed down J/  from  c and  ’ (30-40%) just above Tc and melt of direct produced J/  F. Karsch et al., PLB 637 (2006) 75 etc 5 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji  0 = 1 fm/c used here SPS overall syst ~17% PHENIX overall syst ~12% & ~7% M. J. Leitch QM2006 J/  suppression at SPS can be understood from the melting of  ’and  c. Stronger suppression in central Au+Au collisions compared to the feed down from  c and  ’.

6 Hydro+J/  model First attempt for the study of sequential suppression of charmonia at RHIC. –Incorporate J/ ,  c and  ’ into the evolution of matter. Evolution of matter : (3+1)-dimentional relativistic hydrodynamics –T. Hirano and Y. Nara, PRL 91, 082301, (2003) –T. Hirano and Y. Nara, PRC 69, 034908, (2003) –T. Hirano and K. Tsuda, PRC 66, 054905, (2002) –http://tkynt2.phys.s.u-tokyo.ac.jp/~hirano/parevo/parevo.html J/ ,  c and  ’ : impurity traversing through the matter 6 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji This study is focused on mid-rapidity data since : hydrodynamical description of various observables is best established in mid-rapidity (dN/dy, v2, pT dist., hard probes).

7 Modeling of J/  suppression Survival Prob. In the medium: Decay Width: Motion of J/  free streaming Total Survival Prob. Free Parameters: –(T J/ , T , f FD ) J/  x0x0   (p T ) 7 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji x 0 (Production point) is distributed according to the spatial N col distribution. p T is distributed according to the measured J/ distribution. J/ azimuthal angle, , is flat (0 to 2).

8 Model results Reproduce experimental S J/  tot (=R AA /CNM). –Min.  2 at (T J/ , T , f FD ) = (2.02T c, 1.22T c, 30%) Bar: uncorrelated sys. Bracket: correlated sys. Onset of J/  suppression at N part ~ 160. (  Highest T at N part ~160 reaches to 2.02T c.) Gradual decrease of S J/  tot above N part ~160 reflects that the transverse area with T>T J/  increases. 8 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji

9 Sensitivity for T J/  T J/  /T c = 1.9, 1.96, 2.02, 2.08, 2.14 T  = 1.22T c and f FD =30% 9 T J/  = 2.14Tc T J/  = 2.08Tc T J/  = 2.02Tc T J/  = 1.96Tc T J/  = 1.90Tc Theoretical S J/ tot is very sensitive to T J/  International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji

10 2   1   Min.  2 (=0.86)  2 contour  2 contour (T J/  vs. T  ) at f FD = 30%. Min.  2 = 0.86 at (T J/ , T  )=(2.02T c, 1.22T c ) T J/   can be determined in a narrow region around 2.02T c. T  is not well determined since it is correlated to f FD. 10 T  /T c T J /T c International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji

11 Summary J/  suppression at mid-rapidity at RHIC was investigated using hydro+J/  model. –Dynamical and quantitative approach to the sequential charmonia suppression. Comparison of the experimental survival probability shows: –Observed suppression is described well with T J/  ~2.02T c. –T J/  can be determined in a narrow region. –In accordance with the lattice QCD results. 11 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji

12 Outlook On Going issues: –Prediction of J/  azimuthal anisotropy –More realistic treatment of Decay width –“Hot Wind” (Relative velocity dependence of T J/  ) AdS/CFT Correspondence : –Complete thermalization of J/  (  Free streaming) Will be done: –Study the J/  suppression at forward-rapidity with hydro+J/  model. Connection with gluon saturation (CGC). Fine tuning of hydrodynamics at forward-rapidity is on going. –Application to Cu+Cu system. 12 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji H. Liu, K. Rajagopal and U. A. Wiedemann : hep-ph/0607062.

13 Back Up Slide Memo –Forward Suppression –Sudden suppression (v2, SAA vs. pT) –Smearing of Decay width(SAA) –Hot-wind (SAA,v2, SAA vs. pT) –Complete thermalization(SAA, v2)

14 Temperature field Normalized by T c (=170 MeV) b=2.1 fm (N part =351) b=8.5 fm (N part =114) 14 International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji

15 J/  Measurement at RHIC R AA vs. Cold Nuclear Matter effects. RHIC CNM effects (  abs = 0, 1, 2mb at y=0, y=2) R. Vogt et al., nucl-th/0507027 15 d+Au data-driven prediction of CNM effects (not shown here): R. Granier de Cassagnic hep-ph/0701222 (dN/dy) AuAu (dN/dy) pp x R AA =

16  abs dependence Use  abs =0,2 mb Min.  2 at: (T J/ , T c, f FD ) =(2.00T c, 1.02T c, 35%) for  abs =0mb =(2.02T c, 1.02T c, 15%) for  abs =2mb T J/  is insensitive to the nuclear absorption cross section. 16

17 p T dependence of S AA Free Streaming –Survival Prob. Is almost flat as a function of pT 0-10%10-20% 20-30% 40-50% Survival Prob. Vs. pT (J/ , , total) R AA vs. pT by PHENIX 17

18 Prediction of J/  v2 0-10%10-20% 20-30% 40-50% v2. vs. pT (J/ , , total) v2=3%  J Total (30% feed down) 18

19 Smearing of Decay Width Decay Width : –  decay = 0.5M  [1+tanh((T/T c -T melt /T c ))] Decay Width T/Tc Survival Probability 19

20 Hot Wind T melt (v) = T melt (v=0)/sqrt(  rel ) H. Lui, K. Rajagopal, U. A. Wiedemann hep-ph/607062-v3 Solid : Free streaming Dashed : Hot wind (T J/, T , f FD ) in hot wind =(2.08Tc, 1.36Tc, 35%) 20

21 S AA and v2 vs. pT in Hot Wind T melt (v) = T melt (v=0)/sqrt(  rel ) 0-10%10-20% 20-30% 40-50% Survival Prob. Vs. pT (J/ , , total) 0-10%10-20% 20-30% 40-50% v2. Vs. pT (J/ , , total) v2=5% 21

22 Complete Thermalization T>Tc: J/  moves according to fluid velocity vector. T~Tc: J/  freeze-out: –Re-arrange the J/  px, py and pz using Boltzman Eq (in local fluid coordinate). –Then boost J/  according to the fluid velocity vector. 22

23 pT and v2 of flowed J/  J/  participating the flow dN/dpT [A.U] v2 23

24 pT and v2 in complete thermalization Only Directly produced J/  0-10%10-20% 20-30% 40-50% 0-10%10-20% 20-30% 40-50% dN/dpT flow, non-flow, flow+non-flow v2 24

25 R AA (1.2<|y|<2.2) /R AA (|y|<0.35) 1 R AA 0 1 0 Bar: uncorrelated error Bracket : correlated error Forward rapidity Stronger suppression at forward rapidity. –Gluon saturation (CGC)? Leading to suppression of charm production 25  =2 Open charm yield in Au+Au @ 200 GeV  =0 ~60% Suppression pattern due to CGC K. L. Tuchin hep-ph/0402298

26 (T J/ ,T  ) = (2.02T c,1.22T c ) FD = 30% (y=0), FD= (35-50)% (y=2) Forward Rapidity Experimental S J/  tot (y=2) –CNM at y=0 & CGC suppression (y=2/y=0) Model S J/  tot (y=2) –Hydro at y=2 Need larger feed-down fraction at y=2. Onset of suppression at N part ~ 240? 2.02T c is achieved at N part ~240 at y=2? Further analysis is on going. 26 S J/  (y=0) =R AA /CNM (y=0,  abs =1mb) S J/  (y=2) =R AA /R(CGC)/CNM (y=0,  abs =1mb)

27 Melting temperature Spectral analysis in quenched lattice. J/  cc cc Datta, Karsch, Petreczky & Wetzorke, hep-lat/0312037 Asakawa & Hatsuda, hep-lat/0308034 T c ~270 MeV J/  may survive up to ~2T c.  c and y’ would melt at ~1T c. T. Hatsuda QM2006 (hep-ph/0702293) 27

28 Melting temperature Spectral analysis in full lattice (N f =2). T. Hatsuda QM2006 (hep-ph/0702293) 28 J  cc Aarts et al., hep-lat/0610065 Even with the light quarks, J/  may survive up to ~2T c. T c ~170 MeV

29 J/  suppression at RHIC PHENIX experiment –|y|<0.35 (ee) & 1.2<|y|<2.2 (mm) Au+Au PHENIX Final (nucl-th/0611020) Cu+Cu PHENIX Preliminary 1 R AA 0 (dN/dy) AuAu (dN/dy) pp x R AA = 29 Suppression by: x4 (y~0) x5 (y~2) T. Gunji (PHENIX), QM06, nucl-ex/0703004

30 0 mb 3 mb Low x 2 ~ 0.003 (shadowing region) R dAu Cold Nuclear Matter (CNM) effects Nuclear absorption + Gluon shadowing (anti-shadowing) –Studied in d+Au collisions. Consistent with the shadowing picture. Weak absorption cross section:  abs =0-3mb R.Vogt, PRC71 054902 (2005) CGC also describes CNM effects. D. Kharzeev et al., NPA770 (2006) 40 30

31 p T [GeV] Hydro. calculation (3+1) dimensional hydro. ( ,x,y,  s ) –r, T, v(v x,v y ) at ( ,x,y,  s ) –  0 = 0.6 fm/c, T c =170 MeV –Massless parton gas (u,d,s,g) –Tuned to reproduce dN/dh 31  Hydro data are open to public: http://tkynt2.phys.s.u-tokyo.ac.jp/~hirano/parevo/parevo.html T.Hirano and Y.Nara, PRL91,082301(2003); T.Hirano and Y. Nara PRC69,034908(2004); T.Hirano and K.Tsuda, PRC66,054905(2002).

32 Hydro+Jet model Hydro+“hard probe” works. –Identified hadron spectrum –Back-to-back correlation –Pseudo-y dependence of R AA 32 T. Hirano and Y. Nara PRL91 082301 (2003) p T [GeV] T. Hirano and Y. Nara PRC69 034908 (2004) T. Hirano and Y. Nara PRC68 064902 (2003)

33 T J/  comparison This study shows T J/  ~2.02T c. Estimation of T J/  in 3-falvor QCD from quenched lattice QCD. 33 = 1.7= 270/170 Asakawa & Hatsuda, hep-lat/0308034 This coincides with the result obtained in this study.

34  c feed-down fraction Feed down fraction –~40% of J/  from  c and  ’ 34 χ,1,2  J/ ~30% ΄  J/ 5.5%


Download ppt "Onset of J/  Melting in Quark- Gluon Fluid at RHIC Taku Gunji Center for Nuclear Study University of Tokyo Paper: hep-ph/0703061 Collaboration with: Hideki."

Similar presentations


Ads by Google