Presentation is loading. Please wait.

Presentation is loading. Please wait.

Recalibrated Ozone Profiles from GOME-UV/Vis Nadir spectra Silvia Tellmann, Mark Weber, Vladimir Rozanov, and John Burrows Institute of Environmental Physics/

Similar presentations


Presentation on theme: "Recalibrated Ozone Profiles from GOME-UV/Vis Nadir spectra Silvia Tellmann, Mark Weber, Vladimir Rozanov, and John Burrows Institute of Environmental Physics/"— Presentation transcript:

1 Recalibrated Ozone Profiles from GOME-UV/Vis Nadir spectra Silvia Tellmann, Mark Weber, Vladimir Rozanov, and John Burrows Institute of Environmental Physics/ Institute of Remote Sensing University of Bremen ERS-ENVISAT Symposium, Salzburg, 6-10 Sep 2004

2 O3 nadir profiling in Bremen Calibration Problems in FURM V5 Improved calibration correction low latitude approach global approach Improved tropospheric retrieval Conclusion Overview

3 GOME O3 profile retrieval in Bremen Full Retrieval Method (FURM):  Optimal estimation and Kozlov information matrix approach & validation with ozone sonde data R. Hoogen, V.V. Rozanov, J.P. Burrows, Ozone Profiles from GOME Satellite Data: Algorithm Description and First Validation, J. Geophys. Res., 104, 8263-8280, 1999. R. Hoogen, V.V. Rozanov, K. Bramstedt, K.-U. Eichmann, M. Weber, and J.P. Burrows, Ozone profiles from GOME satellite data-I: Comparison with ozonesonde measurements, Physics and Chemistry of the Earth 24, 447-452, 1999.  Extensive validation of Version 5 with lidar and satellite data K. Bramstedt, K.-U. Eichmann, M. Weber, V. Rozanov, and J. P. Burrows, GOME ozone profiles: A global validation with HALOE measurements, Adv. Space Res. 29, 1637-1642, 2002. K. Bramstedt, J. Gleason, D. Loyola, W. Thomas, A. Bracher, M. Weber, and J. P. Burrows, Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996-2000, Atmospheric Chemistry and Physics 3, 1409-1419, 2003. G. Hansen, K. Bramstedt, V. Rozanov, M. Weber, and J.P. Burrows, Validation of GOME ozone profiles by means of the ALOMAR ozone lidar, Annales Geophysicae 21, 1879-1886, 2003. A. Bracher, M. Weber, K. Bramstedt, S. Tellmann, J. P. Burrows, Long-term global measurements of ozone profiles by GOME validated with SAGE II considering atmospheric dynamics, J. Geophys. Res., accepted, 2004.

4 GOMEO3 profile retrieval in Bremen (II)  Application in scientific studies: Arctic ozone depletion, international field campaigns (OFP, THESEO2000), ozone miniholes K.-U. Eichmann, K. Bramstedt, M. Weber, R. Hoogen, V.V. Rozanov, and J.P. Burrows, Structure of ozone mini-holes from GOME, European Symposium on Atmospheric Measurements from Space, Proc. ESAMS'99, ESA-WPP-161, 231-236, 1999. K.-U. Eichmann, K. Bramstedt, M. Weber, V.V. Rozanov, R. Hoogen and J.P. Burrows, O3 profiles from GOME satellite data - II: Observations in the Arctic spring 1997 and 1998, Physics and Chemistry of the Earth 24, 453-457, 1999. H. Bremer, M. von König, A. Kleinböhl, H. Küllmann, K. Künzi, K. Bramstedt, J. P. Burrows, K.- U. Eichmann, M. Weber, A. P. H. Goede, Ozone depletion observed by ASUR during the Arctic Winter 1999/2000, J. Geophys. Res. 107, 8277, doi:10.1029/2001JD000546, 2002. K.-U. Eichmann, M. Weber, K. Bramstedt, and J.P. Burrows, Ozone depletion in the NH winter/spring 1999/2000 as measured by GOME-ERS2, J. Geophys. Res. 107, 8280, doi:10.1029/2001JD001148, 2002. U. Klein, I. Wohltmann, K. Lindner, and K. F. Künzi, Ozone depletion and chlorine activation in the Arctic winter 1999/2000 observed in Ny-Ålesund, J. Geophys. Res., 107 (D20), 8288, doi:10.1029/2001JD000543, 2002.  Continued development: tropical retrieval (wavelength extension) and cloud/albedo effects, a-priori profile sensitivity S. Tellmann, S., V.V. Rozanov, M. Weber, and J.P. Burrows, Improvements in the tropical ozone profile retrieval from GOME UV/vis nadir spectra, Adv. Space Res. 34, 739-743, 2004. L. N. Lamsal, M. Weber, S. Tellmann, and J. P. Burrows, Ozone column classified climatology of ozone and temperature profiles based on ozonesonde and satellite data, J. Geophys. Res., accepted, 2004.

5 calculate ozone on several altitude levels  large number of parameters: n  70 Develop the profile in a sum of eigenfunctions with proper truncation  n  10 Kozlov-Information-matrix-method combined with optimal estimation: FURM inversion scheme O3-eigenvectors in altitude range altitude [km] O3-EV [-] O3-eigenvectors in wavelength range O3-EV [-] Wavelength [nm]

6 Radiometric calibration problems ratio of GOME solar spectra direct after launch and 5 years later degradation dichroic mirror Ratio [-] etalon Wavelength [nm] 240 400 600 800 1.0 0.8 0.6 0.4 outgassing (mainly optical coatings e. g. dichroic mirror) change optical features etalon structures: contamination layers on cooled detectors (ice) varies in time  spectral modulation UV degradation of the instrument: scan mirror is exposed to UV- radiation polarization degradation

7 FURM V5 empirical calibration wavelength range: 290 – 340 nm broadband calibration correction to allow for UVdegradation  Chebychev Polynomials Channel 1 polynomials [-] wavelength [nm] Chebychev Polynomials 0.1 -0.1 -0.3 280 300 320 340 Deviations between model and measurement residual [-] 310 300 290 280 wavelength [nm] differential corrections: NOT applied !!!!  V5 restricted to wavelengths -0.2 0.0 0.2 0.4

8 Shortcomings in FURM V5 lack of information in upper stratosphere (above 35-40 km) problems in tropics where ozone maximum is shifted to higher altitudes  wavelengths below 290 nm needed to enhance stratospheric information content  Chebyshev polynomials inadequate at short wavelengths Sensitive to measurement measurement sensitivity Altitude [km] Sum of rows AK-Matrix [-] 60 40 20 0 1.0 1.4 0.2 0.6 ozone profiles in tropics Altitude [km] FURM SAGEII Climatology 50 30 40 20 O3-concentration

9 Tropical calibration correction Diff. error Differential sunnormalized radiance GOME Model wavelength [nm] 275 280 285 290 y_meas [-] 275 280 285 290 wavelength [nm] residual & fit of diff. error GOME - Model 5D-4 3D-4 1D-4 -1D-4 5D-4 3D-4 1D-4 -1D-4 y_meas – y_model [-]  large differential structures below 290 nm  strong filling-in of Fraunhofer lines New corrections by differential fit:  Fit addition error term: a ~1/ irradiance  1/irr & polynomial fit before ozone retrieval (prefit in Ch. 1)

10 High latitude calibration correction  Ozone maximum in middle and high latitudes shifted to lower altitudes and longer wavelengths  low differential structure of ozone absorption  strong correlations between broadband calibration  corrections and atmospheric parameter  change of broadband calibration correction required below 300 nm  statistical investigation of residuals Mean residuals 1997-2003 in comparison with HALOE 0.0 0.2 0.4 0.6 1.0 0.8 275 280 290 295 300 Residual [-] 285 wavelength [nm]

11 Results from 1997 tropics Rel. Deviations Old Rel. Deviations New Relative deviations between standard version/new version and independent measurement from SAGE II (Stratospheric Aerosol and Gas Experiment II) Old New 2(SAGE-GOME)/(SAGE+GOME) 50 Altitude [km] 0.0 0.2 -0.2 0.3 -0.3 -0.6-0.4 -0.2 0.0 0.2 0.4 0.6 Comparison of O3 [ppm] SAGE/FURM 50 40 30 20 10 0.1 -0.1 40 50 40 30 20 30 20 altitude [km] latitude [deg] -60 -40 -20 0 2040 60 old results new results

12 Results from 2003 New Results No of Pixel old results No of Pixel 0.3 0.0 0.2 -0.2 -0.3 Altitude [km] 50 40 30 20 50 40 30 20 Relative deviations between SAGE II and FURM Comparison of O3 [ppm] SAGE/FURM 50 45 40 35 30 25 20 15 altitude [km] -0.6 -0.4-0.2 0.0 0.2 0.4 0.6 2(SAGE-GOME)/(SAGE+GOME) Old New 0.1 -0.1 new results latitude [deg] -60 -40 -20 0 20 40 60

13 Tropospheric retrieval  retrieved tropospheric ozone always quite near to climatological values  averaging kernels (AKs) indicate where information in retrieved height level comes from Aks for retrieval levels in troposphere Averaging Kernels [-] altitude [km] O3 Conc FURM Sonde Climatology altitude [km] 50 40 30 20 10 0 50 40 30 20 10 0 Ozone Profile Hohenpeissenberg

14 Tropospherical investigations Profile fit: spectral window too large to make accurate tropospheric ozone fit Use just channel 2 to improve tropospheric column fit Two step retrieval: 1.Common ozone profile fit to get information about stratospheric constituents. 2. Use fitted profile and investigate residual in channel 2 (~320-335 nm)  troposphere here defined up to ECMWF thermal tropopause  Make new diff. fit of tropospherical ozone column, temperature and Ring (inelastic scattering)

15 Sensitivity in Channel 2 Residual & Fit Residual Fit all param. Trop. Col. New col. Old col. Temp. Fit Ring Fit Ring WF fit [-] T WF fit [-] O3 WF fit [-] Residual [-] wavelength [nm] 320322 324 326 330 332 334 328 -0.02 0.00 0.02 -0.002 0.000 0.002 0.04 0.00 0.02 -0.04 0.00 -0.02

16 Tropospherical Column Results Relative Deviations between O3–Sonde and climatology as well as FURM Hohenpeissenberg 1997 Rel. deviations Sonde-Climatology [-] Rel. deviations Sonde-FURM [-] troposph. columns from profile retrieval troposph. columns from differential fit in channel 2 regression line for profile fit regression line for step 2 differential fit in channel 2 + in most cases improvements for very small differences to climatological value instabilities in differential fit (noise)

17 Conclusions  Stratospheric information content can be enhanced by combined calibration concept in short wavelength region using differential „dark current“ approach for tropics/southern anomaly residual fit for middle and high latitudes.  Tropospheric retrieval based upon two step approach accurate stratospheric ozone fit accurate fit of Ring & atm. Parameters realistic climatological ozone profile form  Inclusion of new ozone a-priori climatology (Lamsal et al. 2004)  Reprocessing of GOME 1995-2003 in preparation (funding?)  First application to SCIAMACHY (Version 5)

18 A-priori profile sensitivity  IUP climatology (Lamsal et al., JGR, 2004)  F&K (Fortuin and Kelder, JGR, 1998)  Improvement in the lowermost stratosphere with IUP climatology  see also talk by Lamsal et al. (Abstract 353) for details on IUP O3 climatology 23 August 2002 Hohenpeissenberg 1997

19 SCIAMACHY nadir application  limb retrieval V1.6 (Savigny et al., JAS, 2004)  FURM nadir retrieval Version 5  there are still outstanding issues regarding calibration  Visit poster by Bramstedt et al. (3P08-6) for more details 23 August 2002

20 The Global Ozone Monitoring Experiment Launched in april 1995 on ERS-2 Nadir viewing grating spectrometer Measures backscattered Rad and direct radiance Irr between 240 – 790 nm. Spectral resolution ~ 0.2-0.4 nm Measurand: Sunnnormalized Radiance Rad Irr

21 Basics of Inversion Theory Basic Idea: use forward model and minimize differences between measurement and model Inversion Ozone Profile Ozone Concentration wavelength [nm] Forward Model altitude [km] Sunnormalized Radiance y_meas [-] Model O profile true atmospheric O profile x 3 3

22 Problems of Inversion Theory 1.Nonlinear dependencies: linearization 2.Contradictory solutions: calculate ‘‘best estimate‘‘ 3. Correlations: less independent information than wanted parameters use additional information from climatology to regularize the retrieval Optimal Estimation Method Measurement - & Clim.-Error-Correlation Matrix


Download ppt "Recalibrated Ozone Profiles from GOME-UV/Vis Nadir spectra Silvia Tellmann, Mark Weber, Vladimir Rozanov, and John Burrows Institute of Environmental Physics/"

Similar presentations


Ads by Google