Download presentation
Published byDorcas Fisher Modified over 9 years ago
1
States of Matter There are three main states of matter
Kinetic molecular Theory (KMT) helps us explain the states of matter.
2
Kinetic Molecular Theory (KMT)
KMT states that particles of matter are in constant motion. Molecular motion is defined by: Kinetic Energy = ½ mv2 Kinetic energy is a reflection of the substances temperature. (increase temp = increase kinetic energy) Some assumptions about KMT as they apply to ideal gases: Gas particles are spaced far apart Gas particles collide with “elastic” collisions Particles are in constant, rapid and random motion Gases are not attracted to each other. The temperature of a gas reflects the kinetic energy of the gas particles.
3
States of matter Properties of Gases:
Expansion- gases have no definite shape or volume. Fluidity- gas particles will easily glide past one another Low density- gases have 1/1000 the density of other substances Compressible- gas particles can be pushed closer together Diffusion- gases can easily disperse and mix in space. Effusion- gases can pass through a tiny opening.
4
Polar, strong attractions
Deviation from ideal Comparison of gases: Gas Deviation? Why? N2 No Non-polar diatomic H2 Ne Noble gas He NH3 Yes Polar, strong attractions H2O(g) yes
5
Effusion and Diffusion:
Effusion- gas particles escape through a small opening. example of effusion Diffusion-ability of molecule to mix.
6
States of Matter: Properties of Liquids:
Liquids are more dense than gases due to attraction of particles. Liquids are much less compressible than gases, less empty space. Liquids have fluidity- able to glide past each other and diffuse. Liquids can boil and evaporate. Liquids can be formed into solids.
7
States of Matter Properties of Solids:
Definite shape and volume-organized arrangement of particles Definite melting point- energy requirement to overcome forces holding the particles together Greatest density/ incompressible- little/no empty space Low rate of diffusion- fixed position of particles will not allow them to glide and mix. Organized/crystalline arrangement Simulation and states of matter.
8
Intermolecular Forces (IMF)
Intermolecular forces- describe the interaction between molecules and influence many properties including: Melting point (solid ↔ liquid) Boiling point (liquid ↔ gas) Vapor pressure (gas phase equilibrium of a liquid)
9
IMF & Properties of Water
Water molecules are polar and have strong intermolecular attractions. Unique properties of water due to IMF: High surface tension Capillary action High boiling point (considering MWt.) Density of solid < Liquid state
10
Surface Tension tendency of a liquid to contract in area
result of molecular attractions a sphere has smallest surface area for a given volume water has very high surface tension explains why needles can float on water
11
Capillary Action rising of a liquid in a narrow tube
caused by cohesion and adhesion adhesion - attractive force between two unlike substances cohesion - attractive force between like substances
12
States of Matter and IMF
IMF defines the energy (temp) requirements for a material to change phase phases. Some of these relationships can be interpreted by understanding the following graphs: Vapor Pressure Curves Phase Diagrams
13
Vapor Pressure: Equilibrium vapor pressure is the pressure exerted by a vapor at equilibrium with its corresponding liquid at a given temperature (as gas molecules enter the headspace, the Vapor pressure increased) General trend : IMF = Vapor pressure
14
What is Pressure: Useful relationships:
Is defined as force/area. SI unit = Pascal's Atmospheric Pressure- collision of air molecules with earth surfaces. attitude = atmospheric pressure Barometer- used to measure atmospheric pressure in mm Hg. Useful relationships: 1 atm = 760 mmHg = 760 torr= kPa
15
Vapor Pressure Curve: Describes the boiling point (temp) of a liquid at a given atmospheric pressure. Vapor pressure increases with increasing temperature. IMF = Vapor pressure and IMF = Vapor pressure
16
Boiling A liquid boils when the vapor pressure = the external pressure
Normal Boiling point is the temperature a substance boils at 1 atm pressure. The temperature of a liquid can never rise above it’s boiling point.
17
Changing the Boiling Point – lowering it
Lower the pressure (going up into the mountains). Lower external pressure requires lower vapor pressure. Lower vapor pressure means lower boiling point. Food cooks slower.
18
Changing the Boiling Point – raising it
Raise the external pressure (Use a pressure cooker). Raises the vapor pressure needed. Raises the boiling point. Food cooks faster.
19
Effect of Pressure on Boiling Point
Boiling Point of Water at Various Locations Location Feet above sea level Patm (kPa) Boiling Point (C) Top of Mt. Everest, Tibet 29,028 32 70 Top of Mt. Denali, Alaska 20,320 45.3 79 Top of Mt. Whitney, California 14,494 57.3 85 Leadville, Colorado 10,150 68 89 Top of Mt. Washington, N.H. 6,293 78.6 93 Boulder, Colorado 5,430 81.3 94 Madison, Wisconsin 900 97.3 99 New York City, New York 10 101.3 100 Death Valley, California -282 102.6 100.3
20
Phase Changes Solid Gas Liquid Melting Vaporization Freezing
Condensation
21
Solid Gas Liquid Sublimation Melting Vaporization Freezing
deposition Freezing Condensation
22
Phase Diagram Represents phases as a function of temperature and pressure. Critical temperature: temperature above which the vapor can not be liquefied. Critical pressure: pressure required to liquefy AT the critical temperature. Critical point: critical temperature and pressure (for water, Tc = 374°C and 218 atm).
23
Phase changes by Name
24
Water
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.