Presentation is loading. Please wait.

Presentation is loading. Please wait.

Photochemical Reactions as a Key Step in Natural Product Synthesis.

Similar presentations


Presentation on theme: "Photochemical Reactions as a Key Step in Natural Product Synthesis."— Presentation transcript:

1 Photochemical Reactions as a Key Step in Natural Product Synthesis.
Presented by: Augusto César Hernandez-Perez Literature Presentation March 21th 2011

2 Guatemala: Country of Mayan civilisation
About Me. Guatemala: Country of Mayan civilisation San Mateo Ixtatan

3 About Me. Pointe-Aux-Trembles I’m not Mexican UdM

4 UV-mediated reactions
Outline. Introduction History Basics in photochemistry Equipment UV-mediated reactions Photocyclizations Photochemical Rearrangement

5 Introduction. Brief history
Photochemical reactions have been known for almost as long as chemistry Most observations remained uninterpreted until the 19th century Important work done in Italy by Ciamician, Silber and Paterno After World War I, it became the province of the physical chemistry for 35 years In the 50’s: general interest in photochemistry by the organic chemist due in part by natural product synthesis In the 60’s: emergence of mechanistic organic photochemistry and merging of the organic and physical viewpoints. Arnold, D.R.; Baird, N.C.; Bolton, J.R.; Brand, J.C.D.; Jacobs, P.W.M.; de Mayo, P.; Ware, W.R. Photochemistry An Introduction, Academic Press Inc., New York, 1974

6 Introduction. Basic laws
Activation of reaction is provided by the absorption of a photon Energy conversion table E = h  = c /   / nm kJmol-1 200 598 250 479 300 399 350 342 400 299 500 239 600 700 171 E = hc /  E = Nh = Nhc /  E = 1,197×105 kJmol-1/  h: Planck’s constant = 6.627×1034 Js : frequency (s-1) c: speed of light = 2,998 ×108 ms-1 N: Avagadro’s number = 6,023 ×1023 mol-1 Arnold, D.R.; Baird, N.C.; Bolton, J.R.; Brand, J.C.D.; Jacobs, P.W.M.; de Mayo, P.; Ware, W.R. Photochemistry An Introduction, Academic Press Inc., New York, 1974

7 Not involve in most reaction
Introduction. Orbital types n orbitals:  and * orbitals:  and * orbitals: Non-bonding Overlap of p orbitals Not involve in most reaction Arnold, D.R.; Baird, N.C.; Bolton, J.R.; Brand, J.C.D.; Jacobs, P.W.M.; de Mayo, P.; Ware, W.R. Photochemistry An Introduction, Academic Press Inc., New York, 1974

8 Electronic transition
Introduction. Electronic transition Photochemical excitation: Involves the transfer of a electron from a lower orbital to a higher one E antibonding bonding Arnold, D.R.; Baird, N.C.; Bolton, J.R.; Brand, J.C.D.; Jacobs, P.W.M.; de Mayo, P.; Ware, W.R. Photochemistry An Introduction, Academic Press Inc., New York, 1974

9 Photochemical reaction
Introduction. Photochemical reaction Photochemically excited molecule: Non-radiative (deactivation) processes between states Radiative processes between states Intermolecular energy transfer Chemical reaction A + h’ (emission) A + heat (radiationless decay) A + h A* C* (change excited state) B B* + A (energy transfer) (i.e.: sensititzer) chemical reaction Arnold, D.R.; Baird, N.C.; Bolton, J.R.; Brand, J.C.D.; Jacobs, P.W.M.; de Mayo, P.; Ware, W.R. Photochemistry An Introduction, Academic Press Inc., New York, 1974

10 Electronic ground state
Introduction. Jablonski Diagram E: Energy A: Photon absorption F: Fluorescence (R) P: Phosphorescence (R) S: Singlet state T: Triplet state IC: Internal conversion (N-R) ISC: Intersystem crossing (N-R) E Sn S2 IC S1 ISC A F T1 P S0 Electronic ground state

11 Electronic transition
Introduction. Electronic transition Multiplicity: Singlet VS Triplet Sum of the angular quantum number S in (2S+1) Each electron has a value of 1/2 Paired spin: ½ - ½ =0  S = 0, multiplicty is 1 (singlet) Unpaired spin: ½ + ½ =1  S = 1, multiplicity is 3 (triplet) LUMO HOMO Antiparrallel Spin Paired Spin S1 Parrallel Spin Unpaired Spin T1 Arnold, D.R.; Baird, N.C.; Bolton, J.R.; Brand, J.C.D.; Jacobs, P.W.M.; de Mayo, P.; Ware, W.R. Photochemistry An Introduction, Academic Press Inc., New York, 1974

12 Equipment. Light sources Sun: Free Not practical Example: 30 days in
Cairo sunlight Mercury lamp: Most popular Versatile Laser: Monochromatic, coherent Possibility of extremely high light intensities Surface area low Use to solve special problems Horspool, W.h Aspect of organic photochemistry, Acedemic Press Inc., New York, 1976

13 Spectral emission form Hg arc lamps
Equipment. Hg lamps Low pressure lamp: 4,010-6 atm 90% at 254nm intensity per area is low Medium pressure lamp: 4,610-2 atm broader spectral distribution (265nm, 310nm, 635nm) high temperature High pressure lamp: 100 atm Emission below 280nm is very weak high temperature Spectral emission form Hg arc lamps Horspool, W.h Aspect of organic photochemistry, Acedemic Press Inc., New York, 1976

14 Equipment. Filter and glassware Choice of lamp:
Irradiation between 250 nm – 450 nm For greater degree of selectivity Use of cut-off filters (glass or solution)  of cut-off / nm Chemical composition Below 250 Na2WO4 Below 305 SnCl2 in HCl (0,1M) Below 330 Na3VO4 (2M) Below 355 BiCl3 in HCl Above 450 CoSO4 + CuSO4 Horspool, W.h Aspect of organic photochemistry, Acedemic Press Inc., New York, 1976

15 Equipment. Setup Immersion well batch photochemical reactor:
Limited application for large-scale reaction occurs within a short radius of the lamp Efficiency is scale dependant Others solutions Use various lamps Concentrated reaction mixture Hook, B.D.A.; Dohle, W.; Hirst, P.R.; Pickworth, M.; Berry, M.B.; Booker-Milburn, K.I. J. Org. Chem. 2005, 70,

16 Equipment. Reactor Single pass continuous flow reactor:
Use of traditional water-cooled immersion well FEP: Fluorinated ethylenepropylene Solvent resistant Polymeric material Excellent UV-transmission properties Hook, B.D.A.; Dohle, W.; Hirst, P.R.; Pickworth, M.; Berry, M.B.; Booker-Milburn, K.I. J. Org. Chem. 2005, 70,

17 Equipment. Micro-Reactor Adopted for photochemical application:
Serpentine reactor: long path length (1,15m = 20 turns) Heat-exchanging channel on top Reagents pre-mixed or not Mikroglas chemtech GmbH, Galileo-Galilei-Str Mainz, Germany

18 Natural product synthesis
Introduction. Natural product synthesis UV light: High energy absorption of light facilitates reaction pathways that cannot be accessed by conventional methods Access to various natural products

19 UV mediated-reactions
Photocyclizations 6 Photocyclization of trienes 6 Photocyclization of Stilbenes 6 Photocyclization of enamide 4 Photocyclization of pyridinum salts Photochemical Rearrangement

20 Photocyclization. Photocyclizations: light-induced pericylic ring closing reactions 6 Photocyclizations Photocyclization of Trienes Photocyclization of Enamides 4 Photocyclizations Electrons Photochemical Thermic 4n Disrotatory Conrotatory 4n+2 A: Carbocycles B: Heterocyclic products C: X = NR: pyrrolines, dihydroindoles, hexahydrocarbazoles X=O: vinyl aryl ether Arnold, D.R.; Baird, N.C.; Bolton, J.R.; Brand, J.C.D.; Jacobs, P.W.M.; de Mayo, P.; Ware, W.R. Photochemistry An Introduction, Academic Press Inc., New York, 1974

21 Photocyclization. Photocyclization of Trienes:
Tridachiahydropyrone (1), marine-derived natural product isolated in 1996 Original structure assigned to 1 Unsual fused bicyclic pyrone-contaning ring system 1 Proposed Biosynthetic Origin of 1 Gavagnin, M.; Mollo, E.; Cimino, G.; Ortea, J. Tetrahedron Lett , 37, Sharma, P.; Griffiths, N.; Moses, J. E. Org. Lett. 2008, 10, Sharma, P.; Griffiths, N.; Moses, J. E. Synlett. 2010, 525 – 528

22 No trans diastereoisomer formed
Photocyclization. Photocyclization of Trienes: No trans diastereoisomer formed

23 Photocyclization. Photocyclization of Trienes: Others examples:
Photodeoxytridachione Dictyodendrins B Ellipticine Oxidation of intermediate cyclohexadiene: O2 in air, I2, (PhSe)2 Eade, S. J. ; Walter, M.W.; Byrne, C.; Odell, B.; Rodriguez, R.; Baldwin, J. E.; Adlington, R. M.; Moses, J. E. J. Org. Chem. 2008, 73, Frstner, A.; Domostoj, M.M.; Scheiper, B. J. Am. Chem. Soc. 2006, 128, 8087 – 8094. Ishikura, M .; Hino, A.; Yaginuma, T.; Agata, I.; Katagiri, N., Tetrahedron 2000, 56, 193 – 207.

24 Photocyclization. Photocyclization of Stilbenes:
Effective route to phenanthrene. E/Z isomerisation possible. Need to shift the equilibrium to the product.

25 Photocyclization. Photocyclization of Stilbenes:
Problem of regioselectivity if X and Z are different: If Z = H atom or if Z is smaller than X; formation of undesired regioisomers Solution: Tether the ring if R is in meta or use a vinylbenzene

26 Photocyclization. Photocyclization of Stilbenes:
Santiagonamie (2) extracted from branches of shrub Berberis darwinii 1996 Exhibits wound healing properties 2 Valencia, E.; Patra, A.; Freyer, A. J.; Shamma, M.; Fajardo, V. Tetrahedron Lett. 1984, 25, 3163. Markey, M. D. ; Fu, Y.; Kelly, T. R. Org. Lett. 2007, 9,

27 Photocyclization. Photocyclization of Stilbenes:
2 Benzofquinoline instead of Benzohisoquinoline Valencia, E.; Patra, A.; Freyer, A. J.; Shamma, M.; Fajardo, V. Tetrahedron Lett. 1984, 25, 3163. Markey, M. D. ; Fu, Y.; Kelly, T. R. Org. Lett. 2007, 9,

28 Photocyclization. Photocyclization of Stilbenes:
Failure due to repulsive steric interaction between OMOM and PhNHCO Backup plan: formation of lactone before photocyclization Valencia, E.; Patra, A.; Freyer, A. J.; Shamma, M.; Fajardo, V. Tetrahedron Lett. 1984, 25, 3163. Markey, M. D. ; Fu, Y.; Kelly, T. R. Org. Lett. 2007, 9,

29 Medium-pressure Hg lamp
Photocyclization. Photocyclization of Stilbenes: Medium-pressure Hg lamp Markey, M. D. ; Fu, Y.; Kelly, T. R. Org. Lett. 2007, 9,

30 Photocyclization. Photocyclization of Enamides:
3 possible reaction products generated from zwitterion G H: Formed under oxidative conditions I: Formed by a suprafacial 1,5-H shift (absence of oxidative conditions) J: Formed under reductive conditions (NaBH4, MeOH) Ninomiya, I. J. Nat. Prod. 1992, 55, Ninomiya, I.; Naito, T. Heterocycles 1981, 15,

31 Photocyclization. Photocyclization of Enamides:
Mappicine ketone (MPK) (3) : antiviral lead compound against herpes viruses 3 Pendrak, I .; Barney, S. Wittrock, R.; Lambert, D.M.; Kingsbury, W.D.; J. Org. Chem. 1994, 59, 2623 Kato, I.; Higashimoto, M.; Tamura, O.; Ishibashi, H. J. Org. Chem. 2003, 68,

32 Photocyclization. Photocyclization of Enamides: Low-pressure Hg lamp
Kato, I.; Higashimoto, M.; Tamura, O.; Ishibashi, H. J. Org. Chem. 2003, 68,

33 Photocyclization. 4 Photocyclization: Based on pyridinium salts
Initial contribution from Kaplan, Pavlik and Wilzbach Azabenzvalene Formation of azabenzvalene: * excitation K L M K: Direct traping of initially formed allylic cation L and M: Trapping of rearragement product Kaplan, L.; Pavlik, J. W.; Wilzbach, K. E.; J. Am. Chem. Soc., 1972, 94, 3283 King, R.A. ; Lüthi, H.P.; Schaefer, F.; Glarner, F.; Burger, U. Chem.-Eur. J. 2001, 7, 1734

34 Photocyclization. 4 Photocyclization:
Generates bicyclic aziridine which can undergo nucleophilic ring opening Common nucleophiles: H2O, MeOH, KOH, etc. Others nucleophiles can be used: Organocuprate reagents High yields with polar solvent Bicyclic aziridine: neutralisation prior concentration Aminocyclopentene: concentration prior neutralisation Damiano, T.; Morton, D.; Nelson, A. Org. Biomol. Chem. 2007, 5, Zou, J.; Mariano, P. S. Photochem. Photobiol. Sci. 2008, 7, Kaplan, L.; Pavlik, J. W.; Wilzbach, K. E.; J. Am. Chem. Soc., 1972, 94, 3283

35 Photocyclization. 4 Photocyclization :
(-)-swainsonine (4), potent glycosidase inhibitor product isolated from different plant species such as Asclepiadaceae, Convulaceae, Moraceae and Orchidaceae Polyhydroxylated Indozilidne alkaloid 4 Acetylcholine esterease Gellert, E. J. Nat. Prod. 1982, 45, 50 Pearson, W. H.; Ren, Y.; Powers J. D. Heterocycles 2002, 58, 421 Song, L.; Duesler, E. N.; Mariano, P. S. J. Org. Chem. 2004, 69, 7284 – 7293

36 Photocyclization. 4 Photocyclization : Others examples:
(+)-mannostatin A (-)-allosamidine (+)-castanospermine Ling, R.; Mariano, P.S. J. Org. Chem., 1998, 63, 6072. Li, J.; Lang, F.; Ganem, B. J. Org. Chem., 1998, 63, 3403 Zhao, Z.; Song, L.; Mariano, P.S. Tetrahedron Lett., 2005, 61, 8888

37 UV mediated-reactions
Photocyclizations Photochemical Rearrangement Oxa-di--Methane Rearrangement (ODPM) Photo-Fries Rearrangement

38 Photochemical Rearrangements.
Oxa-di--Methane Rearrangement (ODPM): ,-unsaturated ketones undergo a rearrangement involving a formal 1,2-acyl migration and cyclopropane formation First example in 1966: 2 possibles processes upon irradiation: 1,3-acyl migration or ODPM ODPM proceeds via a triplet state to yield the corresponding cyclopropyl ketone Use of a sensitizer (i.e. acetophenone) to generate the triplet state Hixson, S.S.; Mariano, P.S.; Zimmerman, H.E. Chem. Rev. 1973, 73, Zimmerman, H.E. Armesto, D. Chem. Rev. 1996, 96, Hoffmann, N. Chem. Rev. 2008, 108,

39 Photochemical Rearrangements.
Oxa-di--Methane Rearrangement (ODPM): Cleavage of bond in  position to the photoexcited carbonyl group; acyl group migrates onto the neighbouring C=C bond High chemical yield High degree of stereoselectivity Very general for many cyclic ,-unsaturated ketones Givens, R. S.; Oettle, W. F. J. Chem. Soc., Chem. Commun. 1969, Zimmerman, H.E. Armesto, D. Chem. Rev. 1996, 96,

40 Photochemical Rearrangements.
Oxa-di--Methane Rearrangement : (-)-phellodonic acid (5) isolated from fermentation of fungus in Tasmania in 1993 Exhibits strong inhibitory activities towards various bacteria and cancer cells 5 Medium-pressure Hg lamp M. Stadler, T. Anke, J. Dasenbrock, W. Steglich, Z. Naturforsch. C: J. Biosci. 1993, 48, 545. Reekie, T. A. ; Austin, K. A. B.; Banwell, M. G. ; Willis, A. C. Aust. J. Chem. 2008, 61,

41 Photochemical Rearrangements.
Oxa-di--Methane Rearrangement : M. Stadler, T. Anke, J. Dasenbrock, W. Steglich, Z. Naturforsch. C: J. Biosci. 1993, 48, 545. Reekie, T. A. ; Austin, K. A. B.; Banwell, M. G. ; Willis, A. C. Aust. J. Chem. 2008, 61,

42 Photochemical Rearrangements.
Oxa-di--Methane Rearrangement : Relief of steric compressions between Me and Bz group by photoenolization or -cleavage process M. Stadler, T. Anke, J. Dasenbrock, W. Steglich, Z. Naturforsch. C: J. Biosci. 1993, 48, 545. Reekie, T. A. ; Austin, K. A. B.; Banwell, M. G. ; Willis, A. C. Aust. J. Chem. 2008, 61,

43 Photochemical Rearrangements.
Oxa-di--Methane Rearrangement : Others examples: (-)-hirsutene (-)-complicatic acid ()-capnellene ()-Magellanine Banwell, M.G.; Edwards, A.J.; Harfoot, G.J.; Jolliffe, K.A. J. Chem. Soc. Perkin Trans , 22, Singh, V.; Prathap, S.; Porinchu, M. J. Org. Chem. 1998, 63, Yen, C.-F.; Liao, C.-C. Angew. Chem. Int. Ed. 2002, 41,

44 Photochemical Rearrangements.
Fries Rearrangement: Require strong Lewis acid Recombination can occur in ortho or para position Horspool, W.h Aspect of organic photochemistry, Acedemic Press Inc., New York, 1976

45 Photochemical Rearrangements.
Photo-Fries Rearrangement: First observed in 1960 Does not involve carbonium ions Cleavage of C-O bond proceeds via a triplet state Formation of phenol if aryloxy radical escapes from solvent cage Does not require strong Lewis acid Mild synthetic pathway Horspool, W.h Aspect of organic photochemistry, Acedemic Press Inc., New York, 1976

46 Photochemical Rearrangements.
Photo-Fries Rearrangement : Kendomycin (6) is a potent endothelin receptor antagonist compound with remarkable antibacterial and cytostatic activity Isolated from different Streptomyces species 6 Medium-pressure Hg lamp Bode, H.B.; Zeeck, A. J. Chem. Soc. Perkin Trans , 3, 323 Bode, H.B.; Zeeck, A. J. Chem. Soc. Perkin Trans , 16, 2665 Magauer, T.; Martin, H.J.; Mulzer, J. Angew. Chem. Int. Ed. 2009, 48,

47 Photochemical Rearrangements.
Photo-Fries Rearrangement : Magauer, T.; Martin, H.J.; Mulzer, J. Angew. Chem. Int. Ed. 2009, 48,

48 Photochemical reaction
Conclusion. Equipment Use of continuous flow reactor Possibilities to scale-up reaction Photochemical reaction Light as the only reactant Control in the product generated Access to important fragment from simple molecules

49 Conclusion. I’m not Mexican


Download ppt "Photochemical Reactions as a Key Step in Natural Product Synthesis."

Similar presentations


Ads by Google