Download presentation
1
Objectives Apply inequalities in one triangle.
2
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
3
Example 2A: Ordering Triangle Side Lengths and Angle Measures
Write the angles in order from smallest to largest. The shortest side is , so the smallest angle is F. The longest side is , so the largest angle is G. The angles from smallest to largest are F, H and G.
4
Example 2B: Ordering Triangle Side Lengths and Angle Measures
Write the sides in order from shortest to longest. mR = 180° – (60° + 72°) = 48° The smallest angle is R, so the shortest side is . The largest angle is Q, so the longest side is . The sides from shortest to longest are
5
A triangle is formed by three segments, but not every set of three segments can form a triangle.
6
A certain relationship must exist among the lengths of three segments in order for them to form a triangle.
7
Example 3A: Applying the Triangle Inequality Theorem
Tell whether a triangle can have sides with the given lengths. Explain. 7, 10, 19 No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.
8
Example 3B: Applying the Triangle Inequality Theorem
Tell whether a triangle can have sides with the given lengths. Explain. 2.3, 3.1, 4.6 Yes—the sum of each pair of lengths is greater than the third length.
9
Example 4: Finding Side Lengths
The lengths of two sides of a triangle are 8 inches and 13 inches. Find the range of possible lengths for the third side. Let x represent the length of the third side. Then apply the Triangle Inequality Theorem. x + 8 > 13 x + 13 > 8 > x x > 5 x > –5 21 > x Combine the inequalities. So 5 < x < 21. The length of the third side is greater than 5 inches and less than 21 inches.
10
Example 5: Travel Application
The figure shows the approximate distances between cities in California. What is the range of distances from San Francisco to Oakland? Let x be the distance from San Francisco to Oakland. x + 46 > 51 x + 51 > 46 > x Δ Inequal. Thm. x > 5 x > –5 97 > x Subtr. Prop. of Inequal. 5 < x < 97 Combine the inequalities. The distance from San Francisco to Oakland is greater than 5 miles and less than 97 miles.
11
Lesson Quiz: Part I 1. Write the angles in order from smallest to largest. 2. Write the sides in order from shortest to longest. C, B, A
12
Lesson Quiz: Part II 3. The lengths of two sides of a triangle are 17 cm and 12 cm. Find the range of possible lengths for the third side. 4. Tell whether a triangle can have sides with lengths 2.7, 3.5, and 9.8. Explain. 5 cm < x < 29 cm No; is not greater than 9.8. 5. Ray wants to place a chair so it is 10 ft from his television set. Can the other two distances shown be 8 ft and 6 ft? Explain. Yes; the sum of any two lengths is greater than the third length.
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.