Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Workshop at Institute for Theoretical Physics, University of Wroclaw December 5. & 6. 2009 NICA Accelerator Complex Nuclotron-based Ion Collider fAcility.

Similar presentations


Presentation on theme: "1 Workshop at Institute for Theoretical Physics, University of Wroclaw December 5. & 6. 2009 NICA Accelerator Complex Nuclotron-based Ion Collider fAcility."— Presentation transcript:

1 1 Workshop at Institute for Theoretical Physics, University of Wroclaw December 5. & 6. 2009 NICA Accelerator Complex Nuclotron-based Ion Collider fAcility O. Kozlov for NICA team

2 2 Contents Introduction: 1. NICA scheme & layout 2. Heavy ions in NICA 2.1. Operation regime and parameters 2.2. Collider 3. Polarized particle beams in NICA 4. NICA project status and nearest plans Conclusion O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

3 3 The NICA Project goals formulated in NICA CDR are the following: 1a) Heavy ion colliding beams 197 Au 79+ x 197 Au 79+ at  s NN = 4  11 GeV (1  4.5 GeV/u ion kinetic energy ) at L average = 1  10 27 cm -2  s -1 (at  s NN = 9 GeV) 1b) Light-Heavy ion colliding beams of the same energy range and luminosity 2) Polarized beams of protons and deuterons: p  p   s NN = 12  25 GeV (5  12.6 GeV kinetic energy ) d  d   s NN = 4  13.8 GeV (2  5.9 GeV/u ion kinetic energy ) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

4 4 1. NICA scheme & layout Synchrophasotron yoke Nuclotron Existing beam lines (Fixed target exp-s) Collider C = 251 m “Old” linacKRION-6T & HILac Beam transfer line MPD Spin Physics Detector (SPD) 2.3 m 4.0 m Booster O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

5 5 1. NICA scheme & layout (Contnd) “Old” Linac LU-20 KRION + “New” HILAC Booster Nuclotron Collider MPD SPD Beam dump O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

6 6 2. Heavy ions in NICA Nuclotron (45 Tm) injection of one bunch of 1.1×10 9 ions, acceleration up to 1  4.5 GeV/u max. Collider (45 Tm) Storage of 17 (20) bunches  1  10 9 ions per ring at 1  4.5 GeV/u, electron and/or stochastic cooling Injector: 2×10 9 ions/pulse of 197 Au 32+ at energy of 6.2 MeV/u IP-1 IP-2 Two superconducting collider rings 2.1. Operation regime and parameters Booster (25 Tm) 1(2-3) single-turn injection, storage of 2 (4-6)×10 9, acceleration up to 100 MeV/u, electron cooling, acceleration up to 600 MeV/u Stripping (80%) 197 Au 32+  197 Au 79+ 2х17 (20) injection cycles O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Bunch compression (RF phase jump)

7 7 StageE MeV/u  unnorm  mm  mrad  p/pl bunch m Intensity loss,% Space charge  Q Injection (after bunching on 4 th harmonics 6.2101.3E-36100.022 After cooling (h=1)1002.453.8E-47.17<100.016 At extraction6000.893.2E-43.1 0.0085 Injection (after stripping) 5940.893.4E-43.1<200.051 After acceleration35000.251.5E-42<1 0.0075 At extraction35000.251  10 -3 0.5  Loss = 40% N extr = 1E9 0.03 2. Heavy ions in NICA (Contnd) Bunch parameters dynamics in the injection chain 2.1. Operation regime and parameters O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

8 8 2. Heavy ions in NICA (Contnd) Bunch compression in Nuclotron Phase space portraits of the bunch Bunch rotation by “RF amplitude jump” 15  120 kV , 10 deg./div E – E 0, 2 GeV/div 1 2 2.1. Operation regime and parameters A.Eliseev O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

9 9 2. Heavy ions in NICA (Contnd) Bunch compression in Nuclotron time, 0.1 sec/div.  E_r.m.c. 200 MeV/div.  _r.m.s. 5 deg./div. (1 deg.  0.7 m)  _r.m.s. 0.5 eV  sec/div E – E 0, 2 GeV/div Phase space portraits of the bunch (RF “phase jump”  = 180 0 ) , 50 deg./div 2.1. Operation regime and parameters A.Eliseev O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

10 10 2. Heavy ions in NICA (Contnd) Time Table of The Storage Process 2.1. Operation regime and parameters B(t), arb. units Booster magnetic field B(t), arb. units Nuclotron magnetic field t, [s] O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 electron cooling 1 (2-3) injection cycles, electron cooling (?) Extraction, stripping to 197 Au 79 + bunch compression, extraction injection 34 injection cycles to Collider rings of 1  10 9 ions 197 Au 79+ per cycle 1.7  10 10 ions/ring

11 11 2. Heavy ions in NICA (Contnd) MPD RF I.Meshkov, O.Kozlov, V.Mikhailov, A.Sidorin, A.Smirnov, N.Topilin SPD x,y kicker 10 m Injection channels Spin rotator 3.2. Collider Upper ring Beam dump Long. kicker S_Cool PU x, y, long E_cooler O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

12 12 Ring circumference, [m]251.52 B  max [ T  m ]45.0 Ion kinetic energy (Au79+), [GeV/u]1.0  4.56 Dipole field (max), [ T ]4.0 Quad gradient (max), [ T/m ]29.0 Number of dipoles / length24 / 3.0 m Number of vertical dipoles per ring2 x 4 Number of quads / length32 / 0.4 m Long straight sections: number / length2 x 48.0 m Short straight sections: number / length,4 x 8.8 m 2. Heavy ions in NICA (Contnd) 2.2. Collider General Parameters O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

13 13 βx_max / βy_max in FODO period, m16.8 / 15.2 Dx_max / Dy_max in FODO period, m5.9 / 0.2 βx_min / βy_min in IP, m0.5 / 0.5 Dx / Dy in IP, m0.0 / 0.0 Free space at IP (for detector)9 m Beam crossing angle at IP0 Betatron tunes Qx / Qy5.26 / 5.17 Chromaticity Q’x / Q’y-12.22 / -11.85 Transition energy,  _tr / E_tr4.95 / 3.012 GeV/u RF system harmonics amplitude, [kV] 102 100 Vacuum, [ pTorr ]100  10 2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

14 14 Energy, GeV/u1.03.5 Ion number per bunch1E9 Number of bunches per ring17 Rms unnormalized beam emittance,  ∙mm mrad3.80.25 Rms momentum spread1E-3 Rms bunch length, m0.3 Luminosity per one IP, cm -2 ∙s -1 0.75E261.1E27 Incoherent tune shift  Q bet 0.0560.047 Beam-beam parameter  0.00260.0051 IBS growth time, s 65050 2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) Collider beam parameters and luminosity O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

15 15 2) Injection and storage with barrier bucket technique and cooling of a coasting (!) beam, 20 bunches, bunch number is limited by interbunch space in IP straight section, bunch compression in Nuclotron is NOT required (!) Electron and/or stochastic cooling for storage and luminosity preservation, bunch formation after storage are required. 2. Heavy ions in NICA (Contnd) Two injection schemes are considered: 1) bunch by bunch injection, 17 bunches: bunch number is limited by kicker pulse duration, bunch compression in Nuclotron is required (!) Electron and/or stochastic cooling is used for luminosity preservation. 2.2. Collider (Contnd) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Under development by Prof. T.Katayama (retired from Tokyo Univ.)

16 16 3. Heavy ions in NICA (Contnd) 3.2. Collider (Contnd) Ion trajectory in the phase space (  p,  ) 22 V(t) Cavity voltage (  p) ion   _stack 0 Barrier Bucket Method (Contnd) Stack NICA: T revolution = 0.85  0.96  s, V BB  16 kV The method was tested experimentally at ESR (GSI) with electron cooling (2008).  p  (  p) separatrix Unstable phase area (injection area) Cooling is ON O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

17 17  _ norm(E) [  ∙mm∙ mrad] 10 1.0 0.1 0.5 1.5 2.5 3.5 4.5 E, GeV/u 1.6 1.4 1.2 1.0 0.8 0.5 1.5 2.5 3.5 4.5 E, GeV/u N_ion/bunch vs Energy [1E9] ! 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Collider luminosity vs Ion Energy Two outmost cases at  Q Lasslett = Const : 1) L(E) = Const  ; 2) N ion (E) = Const . 10 1.0 0.1 0.01 0.5 1.5 2.5 3.5 4.5 E, GeV/u L(E) [1E27 cm -2 ∙s -1 ] O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

18 18 ! B [kG] 8 6 4 2 T e  = 10 eV 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) BETACOOL simulation Parameters ion beam: 197 Au 79+ at 3.5 GeV/u,  initial =0.5  ∙mm∙mrad, (  p/p) = 1∙10 -3 electron beam: I e = 0.5 A, r e = 2 mm, T e|| = 5 meV;  = 0.024 (6 m/250 m) IBS Heating and cooling – luminosity evolution at electron cooling 6 Luminosity [1E27 cm -2 ∙s -1 ] 4 2 0 O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Conclusion: Electron magnetization is much more preferable

19 19 2. Heavy ions in NICA (Contnd) What is “old” and what is new? 2.2. Collider: the problems to be solved  Collider SC dipoles with max B up to 4 T, O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009  “Flexible” lattice (transition energy change with energy),  RF parameters (related problem),  Single bunch stability,  Vacuum chamber impedance and multibunch stability,  Electron clouds (vacuum chamber coating?),  Stochastic cooling of bunched ion beam,  Electron cooling at electron energy up to 2.5 MeV. see below

20 20 3. Polarized particle beams in NICA Longitudinal polarization formation MPD Yu.Filatov, I.Meshkov B B Upper ring SPD Spin rotator: “Full Siberian snake” O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 “Siberian snake” : Protons, 1  E  12 GeV  (BL) solenoid  50 T∙m Deuterons, 1  E  5 GeV/u  (BL) solenoid  140 T∙m

21 21 3. Polarized particle beams in NICA (Contnd) Longitudinal polarization formation (Contnd) MPD SPD B Lower ring “Full Siberian snake” O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

22 22 From Nuclotron S 3. Polarized particle beams in NICA (Contnd) Spin rotator B Longitudinally polarized particles  injection   ~ 90 0 O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Protons, 1  E  12 GeV  (BL) dipole  3 T∙m Deuterons, 1  E  5 GeV/u  (BL) dipole  5.8 T∙m

23 23 3. Polarized particle beams in NICA (Contnd) Transverse polarization formation MPD SPD B Lower ring Dipole “45 0 ” O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 B (45 0 ) Dipole “45 0 ” B (45 0 )

24 24 Energy, GeV512 Proton number per bunch6E101.5E10 Rms relative momentum spread10E-3 Rms bunch length, m1.70.8 Rms (unnormalized) emittance,  mm  mrad0.240.027 Beta-function in the IP, m0.5 Lasslet tune shift0.00740.0033 Beam-beam parameter0.005 Number of bunches10 Luminosity, cm -2∙ s -1 1.1E30 3. Polarized particle beams in NICA (Contnd) Parameters of polarized proton beams in collider O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

25 25 Type of resonance Resonance condition Number of resonances at acceleration p  0 – 12 GeV d  0 – 6 GeV/u 1.Intrinsic res.Q s = kp  Q z 60 2.Integer res.Q s = k251 (5.6 GeV/u) 3.NonsuperperiodicQ s = m  Q z, m  kp442 4.Coupling res.Q s = m  Q x 492 3. Polarized particle beams in NICA (Contnd) Polarized particle acceleration in Nuclotron: Spin resonances Q – betatron and spin precession tunes, k, m – integers, p – number of superperiods (8 for Nuclotron) Power of the Spin resonances: P 1,2 ~ 10 3 ∙P 3,4 O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

26 26 y s x y y s y s x y t Q s - Q res Spin tune dynamics Protons, 12 GeV,  Q ~ 0.01,  t = 50  s  x ~ 0.2, B x L x = 0.18 T∙m,  y ~ 0.2, B s ∙L s = 4.7 T∙m,  x -  y -2 ∙  x  y  x  Q S =  x ∙  y /2  per 1 turn 3. Polarized particle beams in NICA (Contnd) Polarized proton acceleration in Nuclotron: Crossing of spin resonances BxBx BsBs BsBs BxBx BxBx Fast spin rotator x y s Yu.Filatov O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

27 27 4. NICA project status and plans January 2008 NICA CDR MPD LoI Conceptual Design Report of Nuclotron-based Ion Collider fAcility (NICA) (Short version) January 2009 NICA CDR (Short version) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

28 28 4. NICA project status and plans (Contnd) Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том I Дубна, 2009 Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том II Дубна, 2009 August 2009 NICA TDR (volumes I & II) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

29 29 4. NICA project status and plans (Contnd) Approved by Director of JINR academician A.N.Sisakian ____________________ Nuclotron-based Ion Collider fAcility (NICA) "____ " 2009 г. Technical Design Report Project leaders: A.Sisakian,A.Sorin TDR has been developed by the NICA collaboration: JINR Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets, E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets, V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky, R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov, S.Yakovenko, V.Zhabitsky Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov, T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin IHEP, Protvino O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev, INR RAS, Troitsk V.Matveev, A.Belov, L.Kravchuk Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan Chief engineer of the Project V.Kalagin, Chief designer of the Project N.Topilin Editors: I.Meshkov, A.Sidorin O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

30 30 4. NICA project status and plans (Contnd) Since publication of the 1-st version of the NICA CDR The Concept was developed, the volumes I and II of the TDR have been completed: Volume I – Part 1, General description Part 2, Injector complex Volume II – Part 3, Booster-Synchrotron A brief review of the Project, its status and plans of realization are presented here. O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

31 31

32 32 HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL), under design and construction (O.Belyaev & the Team, IHEP, Protvino). 4. NICA project status and plans 4.1. Injector KRION - Cryogenic ion source of “electron-string” type developed by E.Donets group at JINR. It is aimed to generation of heavy multicharged ions (e.g. 197 Au 32+ ). RFQ Electrodes 2H cavities of "Ural" RFQ (prototype) Sector H-cavity of “Ural” RFQ DTL (prototype) E.D.Donets E.E.Donets O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 To be commissioned in 2013. KRION-6T Cryostat & vac. chamber To be commissioned in 2013.

33 33 4. NICA project status and plans 4.2. Booster Superconducting Booster in the magnet yoke of The Synchrophasotron Synchrophasotron yoke B  = 25 T  m, B max = 1.8 T 1)3 single-turn injections 2) Storage and electron cooling of 8×10 9 197 Au 32+ 3) Acceleration up to 600 MeV/u 4) Extraction & stripping A.Butenko V.Mikhailov G.Khodjibagiyan N.Topilin Nuclotron Booster “Nuclotron-type” SC magnets for Booster 2.3 m 4.0 m Vladimir I. Veksler Dismounting is in progress presently To be commissioned in 2013. O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

34 34 4. NICA project status and plans 4.2. Booster (Contnd) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

35 35 4. NICA project status and plans 4.2. Booster (Contnd) 2.3 m 4.0 m Heavy ion Linac Beam injection Slow extraction Fast extraction Transfer to Nuclotron RF system Electron cooling system Experimental area bld. 1 B O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

36 36 4. NICA project status and plans 4.2. Booster (Contnd) Booster parameters Circumference214 m Max B  27 T·m Lattice typeFODO Superperiods4 Periods24 Strait sections2 x 8,6 m Dipol magnets40 x 2 m Maximum dipole field 1,8 T Quadrupole magnets 48 x 0.4 m Vacuum10 -11 Torr O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

37 37 4. NICA project status and plans 5.2. Booster (Contnd) SC hollow cable O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 SC magnet technology

38 38 4. NICA project status and plans 4.2. Booster (Contnd) electron gun collector cryogenic shield superconducting solenoids “warm” solenoids E.Ahmanova, I.Meshkov, A.Smirnov, N.Topilin, Yu.Tumanova, S.Yakovenko Electron cooling system of the Booster O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 superconducting solenoids

39 39 To be commissioned in 2013. 4. NICA project status and plans 4.3. Nuclotron-NICA To be designed, constructed and commissioned: 1.Injection system (new HILAC) 2.RF system – new version with bunch compression 3.Dedicated diagnostics 4.Single turn extraction with fine synchronization 5.Polarized protons acceleration in Nuclotron G.Trubnikov & the Team O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

40 40 4. NICA project status and plans 4.4. Collider “Twin magnets” for NICA collider rings “Twin” dipoles “Twin” quadrupoles 1 – Cos  coils, 2 – “collars”, 3 – He header, 4 – iron yoke, 5 – thermoshield, 6 – outer jacket Double ring collider; (B  ) max = 45 T  m, B max = 4 T A.Kovalenko G.Khodjibagiyan O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 To be commissioned in 2014.

41 41 4. NICA project status and plans 4.4. Collider Electron cooling system of the Collider Max electron energy, MeV 2.5 Max electron current, A 0.5 Solenoid magnetic field, T 0.3 “Magnetized” electron beam Solenoid type: “warm” at acceleration columns superconducting at transportation and cooling sections HV generator: Dynamitron type I.Meshkov A.Smirnov S.Yakovenko O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 6 m 3 m To be commissioned in 2014. Under development in collaboration with - All-Russian Institute for Electrotechnique (Moscow) - FZ Juelich - Budker INP

42 42 O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 GSI/FAIR SC dipoles for Booster/SIS-100 SC dipoles for Collider 4. NICA project status and plans 4.5. NICA Collaboration Budker INP Booster RF system Booster electron cooling Collider RF system Collider SC magnets (expertise) HV electron cooler for collider Electronics (?) IHEP (Protvino) I njector Linac FZ Jűlich (IKP) HV Electron cooler Stoch. cooling Fermilab HV Electron cooler Beam dynamics Stoch. cooling All-Russian Institute for Electrotechnique HV Electron cooler Corporation “Powder Metallurgy” (Minsk, Belorussia): Technology of TiN coating of vacuum chamber walls for reduction of secondary emission BNL (RHIC) Electron & Stoch. Cooling ITEP: Beam dynamics in the collider GSI/JINR/BNL 2005 - 2009 Round Table Discussions I, II, III, IV JINR, Dubna, 2005, 2006, 2008 http://theor.jinr.ru/meetings/2008/roundtable/

43 43 Thank you for your attention! O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

44 SPD 25 m From Nuclotron “Collider 2T” Collider: C_Ring 380 м Dipoles 2 Тл Luminosity? MPD

45 “Collider 2T” (Contnd) Dipoles 2 Тл G.Khodjibagiyan et al.

46 Внутренние пучки ETA-NUCLEI, DELTA-2, LNS Выведенные пучки ALPOM, BECQUEREL, DELTA-SIGMA, ENERGY & TRANSMUTATI ON, FAZA-3, GAMMA-2, GIBS, MARUSYA, NIS, KRISTAL, TPD, STRELA, Med- Nuclotron, Radiobiological investigations Интерес стран к работам на Нуклотроне


Download ppt "1 Workshop at Institute for Theoretical Physics, University of Wroclaw December 5. & 6. 2009 NICA Accelerator Complex Nuclotron-based Ion Collider fAcility."

Similar presentations


Ads by Google