Download presentation
1
Exploring Mendelian Genetics
11.3 Biology Mr. Hines
2
What happens when you consider more than one gene when you cross 2 parents?
Independent assortment Mendel performed more experiments with the pea plants to see what would happen if 2 genes were followed. This is known as a Two-Factor Cross or a Dihybrid cross.
3
The Two Factor Cross: F1 Mendel isolated the following pea plants
Plants that produced only round yellow peas (genotype RRYY – homozygous dominant) Plants that produced wrinkled green peas (genotype rryy – homozygous recessive) Results – all of the F1 offspring produced round yellow peas.
4
Show dihybrid segregation
RRYY rryy
5
Question If mom has dominant round and yellow seeds and dad has recessive wrinkled green seeds, can the offspring have all 4 possibilities? Round yellow Round green Wrinkled yellow Wrinkled green
6
Draw dihybrid punnett square
7
100% of the offspring were Round and Yellow.
Where did the wrinkled green trait go? This did not show whether genes will assort independently It did however set up heterozygous offspring (RrYy) All offspring are heterozygous dominant for Round yellow seeds.
8
The Two factor cross: F2 Mendel knew that all plants were heterozygous dominant for Round, yellow peas (RrYy) How would the genes segregate when the F1 generation was crossed? Remember that the F1 generation was formed by the fusion of gametes carrying the dominant RY alleles and the other carrying the recessive ry alleles.
9
Does this mean that the dominant alleles always stay together?
Or would they segregate independently? 556 peas were produced in the F2 generation
10
Mendal’s data: 556 Total Peas in F2 generation
Phenotype Number of Peas Yellow and Round (dominant traits) 315 Wrinkled and Green (recessive traits) 32 Other combinations - Yellow and wrinkled/Green and Round 209
11
Perform this cross RrYy x RrYy
12
Figure 11-10 Independent Assortment in Peas
Section 11-3
13
Notice the other combinations
These phenotypes – Yellow and wrinkled Green and round WERE NOT SEEN IN EITHER PARENT What does this mean?
14
This meant that the alleles for seed shape segregated independently of those for seed color.
This is known as Independent Assortment. Independent assortment – independent segregation of genes during the formation of gametes.
15
Independent assortment explains why traits such as nose shape and eye color do not always go together. The shape of your dad’s nose and his eye color will segregate separately. This is why you can have dad’s nose and mom’s eyes
16
Practice with dihybrid cross examples
17
Ability? Can you understand the language of genetics?
Read the top of page 272 “A SUMMARY OF MENDEL’S PRINCIPLES. Can you read this and understand it?
18
The inheritance of biological characteristics is determined by individual units known as genes. Genes are passed from parents to their offspring. In cases in which two or more forms (alleles) of the gene for a single trait exist, some forms of the gene may be dominant and others may be recessive. In most sexually reproducing organisms, each adult has two copies of each gene—one from each parent. These genes are segregated from each other when gametes are formed. The alleles for different genes usually segregate independently of one another.
19
Beyond Dominant and Recessive Alleles
Mendel’s contribution to genetics was great, but there is more to the story – most of which is not covered in this course. Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles or multiple genes.
20
Incomplete dominance There is a plant named “four o’clock” (genus Mirabilis) Mirabilis can have flowers of 3 colors – Red, white, and pink. If you cross Red flowers with white flowers, you get pink flowers.
21
Figure 11-11 Incomplete Dominance in Four O’Clock Flowers
Section 11-3
22
Mirabilis Red x White
23
Figure 11-11 Incomplete Dominance in Four O’Clock Flowers
Section 11-3
24
Consider a heterozygous cross of Pink vs pink
25
Codominance Some chickens demonstrate codominance.
This next example is not true of all chickens. If you cross a black chicken and a white chicken, the offspring will be speckled with black and white feathers.
26
Codominance
27
Other examples of codominance
28
Multiple alleles Many genes have more than 2 alleles.
These are said to have multiple alleles. This does not mean that one individual will have more than 2 alleles in the genotype, it simply means that there are many alleles in the population
29
Rabbit hair color is a good example of multiple alleles.
There is one gene for hair color and there are four different alleles.
31
Practice for advanced multiple allele monohybrid cross
Genotype Phenotype cchch chch cc Cch cchcch
32
Perform this monohybrid cross
cchch x Cch Draw Punnett square Predict the Probability for each phenotype.
34
Polygenic Traits Some traits are created as a result of many genes.
These are called polygenic traits. It is believed that human skin color is controlled by 4 genes.
35
Genetics and the environment
Genes don’t control everything. A plant can a have a “tall” gene, but if it does not receive enough sunlight, it will not be tall. A human can have an “obese” gene, but if he does not have enough nourishment, he will not be obese.
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.