Download presentation
Published byMargarita Kettle Modified over 9 years ago
1
Combined Cycle Theory Dalton Plant Ouachita Plant
2
What is a “Combined Cycle” Power Plant?
Uses 2 thermodynamic cycles to generate electricity… Brayton - Gas Turbine & Rankine - Steam Plant ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ The Brayton cycle gets its heat from burning the fuel. The Rankine cycle uses heat rejected from the Brayton cycle.
3
Combined Cycle Designation
S207FA Steam and Gas (STAG) The Number of CT’s (and HRSG’s) per Steam Turbine Model Series MS6001FA MS7001FA MS9001FA MS7001FB MS9001FB MS9001H MS7001H ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4
Brayton Cycle ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5
Ideal Brayton Cycle 3 4 1 2 Compressor Turbine 1 2 3 4 Fresh Air Exhaust Combustion Fuel 1 2 3 4 Entropy S Temperature q in q out Const. p Generation Heat Rejected 1 2 3 4 Pressure Specific Volume v q in q out Const. s Work Out A Brayton Cycle is an all gas cycle where combustion and exhaust take place at different, but constant pressures. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6
Ideal Brayton Cycle Efficiency
The theoretical maximum Brayton Cycle thermal efficiency is a function of: 1 2 3 4 Entropy S Temperature q in q out Const. p Generation Heat Rejected The Pressure ratio - Ratio of Combustion to Atmospheric Pressure The maximum temperature achieved or the maximum temperature that the machine can withstand Ambient temperature Expressed as: th = rp (1-k)/k Where: rp = Pressure Ratio k = specific heat ratio of the working fluid ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Typically 30% - 40%
7
Perryville Simple Cycle GT
Inlet Transformer Generator Gas Turbine Exhaust Stack
8
Rankine Cycle ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
9
Rankine Cycle (Steam Side)
Entropy (Btu/#/degF) Boiling Condensation Pump FW Heating LPT Reheating HPT Absolute Temperature (degF) Heat Rejected to Condenser Electrical Generation LPT Exhaust enters condenser A Rankine Cycle is a condensing cycle. In our case, steam is condensed. Heat is added independent of pressure. Superheating ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
10
Ideal Rankine Cycle Efficiency
Entropy (Btu/#/degF) Boiling Condensation Pump FW Heating LPT Reheating HPT Absolute Temperature (degF) Heat Rejected to Condenser Electrical Generation LPT Exhaust enters condenser Superheating The theoretical maximum Rankine Cycle thermal efficiency is a function of: Boiler pressure The max. temperature achieved (the max. temperature the machine can withstand) Ambient temperature Expressed as: th = (Wout - Win) / Qin Where: Wout = work done by the system, Win = work done on the system, and Qin = heat added ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Typically 30% - 40%
11
Combined Cycle ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
12
Combined Cycle Brayton Rankine
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
13
The Concept Generator Intake Fuel Combustion Turbine Heat Recovery Steam Generator Steam Turbine Cooling Tower A Combined Cycle Power Plant has One or more Gas Turbines with Electrical Generators and One or more Steam Turbines with Electrical Generators A Combined Cycle Power Plant produces electric power from fossil fuel using: Gas Turbine, supplying turbine exhaust heat to Heat Recovery Steam Generator, supplying steam to Steam Turbine ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
14
Perryville Combined Cycle Plant
16
For any system……. Q – E = W Heat In – Energy Change = Work Out
Combined Cycle For any system……. Q – E = W Heat In – Energy Change = Work Out WORK AND ENERGY ARE INTERCHANGEABLE ! To a power plant this means: Heat in from fuel BTU/Hr Electrical Generation MW Heat rejected MW - = ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
17
So why use a Combined Cycle?
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
18
Because it increases overall efficiency!
Fuel Energy In GT Gen. GT Waste Heat (HRSG Energy In) ST Gen. ST Waste Heat Total Gen. Out the Stack CT Efficiency = ~ 35% CT Gen. Fuel Energy In ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ST Efficiency = ~ 35% ST Gen. HRSG Energy In Overall Efficiency = ~ 58% Total Gen. Total energy In OA = CT + ST - CT ST
19
Why use a Combined Cycle?
Let’s put in numbers… 907 MW (3 Billion BTU/Hr) Fuel 330 MW 577 MW CT 190 MW 349 MW ST 520 MW Total 38 MW CT Efficiency = ~ 36% 330 MW 907 MW ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ST Efficiency = ~ 33% 190 MW 577 MW Overall Efficiency = ~ 57% 520 MW 907 MW OA = x .33 = .57 = 57%
20
Combined Cycle 349 MW 38 MW 190 MW 907 MW 330 MW 577 MW
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 330 MW 577 MW
21
GT/ST Combined Cycle Advantages: Disadvantages:
Short Project Schedules ~ 24 Months High Thermal Efficiency ~ almost 60% Uses multiple fuels - Oil or Gas Quick Startup - 1 to 5 hours Low Environmental Emissions per kW Operating Flexibility – Run CT’s alone Easier to Operate and Maintain High Availability ~ 90% ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Disadvantages: Burns “expensive” fuel.
22
Questions? ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.