Download presentation
Published byMaddison Stansbury Modified over 9 years ago
1
Advanced Flexure Design COMPOSITE BEAM THEORY SLIDES
Teaching Modules for Steel Instruction Advanced Flexure Design COMPOSITE BEAM THEORY SLIDES Developed by Scott Civjan University of Massachusetts, Amherst Composite Beam Theory
2
Composite Beams Composite action accounts for the steel beam and floor slab working together to resist bending moments. Advantages over non-composite design: Increased strength Increased stiffness For given load conditions can achieve: Less steel required Reduced steel depth Composite Beam Theory
3
Composite Behavior c T T c c NA NA Concrete Composite T NA Steel
Non-Composite Slip at Interface Two Neutral Axes Mn= Mnconcrete+Mnsteel I = Iconcrete + Isteel Fully Composite Assumed no slip at Interface One Neutral Axes Mn >> Mnconcrete+Mnsteel I >> Iconcrete+Isteel Shear at interface transferred by shear connectors. Composite Beam Theory 3
4
Slabs Composite Metal Deck Slabs – most commonly used today.
Advantages: Stay in place form. Slab shoring typically not required. Metal deck serves as positive reinforcement. Metal deck serves as construction platform. Flat Soffit Slabs – typically, older construction. Composite Beam Theory
5
Effective Width of Slab
beff = effective width of the slab Function of: Span length Distance to nearest beam Distance to edge of slab beff beff s3 edge s1 s2 edge Composite Beam Theory
6
Flat Soffit Slabs beff ts, slab thickness Composite Beam Theory
7
A A Metal Deck Slab - Ribs Parallel to Beam Span beff hr tc
hr = height of deck tc = thickness of concrete above the deck Composite Beam Theory 7 7
8
A A Metal Deck Slab - Ribs Perpendicular to Beam Span beff hr tc
Composite Beam Theory
9
REFERENCES: COMPOSITE BEAMS Steel Deck Institute web pages
Nelson Headed Studs web pages Steel Deck Manufacturer Catalogs These can be found on-line Composite Beam Theory
10
Typical Framing Column Girder Beam Slab/Deck Span PLAN
Composite Beam Theory
11
INSERT PHOTOS: AISC Four Story Office Building Photo Slide Shows
Metal Decking Slides Shear Studs Slides Composite Beam Theory
12
Flexural Strength Composite Beam Theory
13
Flexural Strength Positive Moment
The strength is determined as the plastic stress distribution on the composite section. Negative Moment It typically is assumed that the concrete carries no tensile forces and reinforcement is minimal, therefore strength is identical to a bare steel section. Composite Beam Theory
14
Flexural Strength Positive Moment
Fully Composite: The strength of either the floor slab in compression or the steel beam in tension is transferred at the interface. Partially Composite: The force transfer between the slab and beam is limited by the connectors. Composite Beam Theory
15
Flexural Strength Positive Moment
Lateral Torsional Buckling is prevented by the slab (continuous bracing). Local Flange Buckling is minimized by the slab. In general, strength is controlled by Mp. Composite Beam Theory
16
Handout on Calculations:
INSERT INFORMATION: STRENGTH OF FULLY COMPOSITE BEAM SECTION CALCULATIONS Handout on Calculations: FullyCompositeCalcs.PDF Composite Beam Theory
17
Flexural Strength The bare steel section must support the temporary construction loads (before the concrete has set), or the steel beam must be shored until the composite section is effective. Composite Beam Theory
18
Shear Transfer Between Slab and Beam
Typically, provided by headed shear studs. Shear flow, n, is calculated along the interface between slab and beam. Minimal slip allows redistribution of forces among shear studs. Therefore, studs are uniformly distributed along the beam. The total shear flow, n, must be provided on each side of Mmax. Composite Beam Theory
19
Shear Transfer Between Slab and Beam
Compression Force Tension Force Composite Beam Theory 19 19
20
Shear Transfer Between Slab and Beam
Compression Force Tension Force Composite Beam Theory 20 20
21
Shear Transfer Between Slab and Beam
n = shear flow Composite Beam Theory 21 21
22
Shear Transfer Between Slab and Beam
= shear flow to be transferred by shear studs V = Shear at the location considered Q = first moment of inertia of area above the interface Itr = moment of inertia of the transformed cross section Composite Beam Theory
23
Partially Composite Beam
Consider when fully composite strength is greater than required. This may occur when: The shape is based on construction loads. The shape is based on architectural constraints. The lightest shape has excess strength. Composite Beam Theory
24
Handout on Calculations:
INSERT INFORMATION: STRENGTH OF PARTIALLY COMPOSITE BEAM SECTION CALCULATIONS Handout on Calculations: PartiallyCompositeCalcs.PDF Composite Beam Theory
25
Serviceability For composite section deflections:
Transform section into equivalent steel section. Compute center of gravity of transformed section. Compute Itr of transformed section. Composite Beam Theory
26
Serviceability beff beff/n tc tc hr hr Composite Beam Transformed Beam
Note: modular ratio, n = Es/Ec Composite Beam Transformed Beam Composite Beam Theory 26 26
27
Shear Strength It typically is assumed that the slab carries no shear forces, therefore composite strength is identical to that of a bare steel section. Composite Beam Theory
28
AISC Manual -14th Edition
Teaching Modules for Steel Instruction Advanced Beam Design COMPOSITE BEAM AISC Manual -14th Edition Developed by Scott Civjan University of Massachusetts, Amherst
29
Composite Beam - AISC Manual 14th Ed
Chapter I: Composite Member Design Composite Beam - AISC Manual 14th Ed
30
Composite Beam - AISC Manual 14th Ed
Slab effective width, be To each side of the beam, be is limited by: one-eighth beam span one-half distance to adjacent beam distance to edge of slab Lowest value controls. Composite Beam - AISC Manual 14th Ed
31
Composite Beam - AISC Manual 14th Ed
Metal Deck Slab ≥0.5” tc ≥ 2” ≥1.5” hr ≤ 3” wr ≥ 2” steel beam wr = average deck width hr = height of deck tc = thickness of concrete above the deck Composite Beam - AISC Manual 14th Ed 31 31
32
Composite Beam - AISC Manual 14th Ed
Fully Composite Beam: Bending Strength Composite Beam - AISC Manual 14th Ed
33
Composite Beam - AISC Manual 14th Ed
fb = 0.90 (Wb = 1.67) Bending Strength Composite Beam - AISC Manual 14th Ed
34
Composite Beam - AISC Manual 14th Ed
Bending Strength POSITIVE MOMENT For h/tw The strength is determined as the plastic stress distribution of the composite section. (*Note: All current ASTM A6 W, S and HP shapes satisfy this limit.) NEGATIVE MOMENT It is typically assumed that the concrete carries no tensile forces and reinforcement is minimal, therefore strength is identical to a bare steel section. Composite Beam - AISC Manual 14th Ed
35
Composite Beam - AISC Manual 14th Ed
INSERT INFORMATION: STRENGTH OF FULLY COMPOSITE BEAM SECTION CALCULATIONS Handout on Calculations: FullyCompositeCalcs.PDF Composite Beam - AISC Manual 14th Ed
36
Composite Beam - AISC Manual 14th Ed
Bending Strength Fully Composite Strength can be determined by using Table 3-19. Y2 - Calculated per handout Y1 = 0 if PNA in the slab, Calculated per handout if PNA in the beam flange or web. Composite Beam - AISC Manual 14th Ed
37
Composite Beam - AISC Manual 14th Ed
Table 3-19 Nomenclature (Pg. 3-14) 1 TFL 2 4 Eq. spaces 3 tf 4 BFL 5 Beam Flange Enlarged Detail be a/2 Location of effective concrete flange force (SQn) a Ycon Y2 TFL(pt.1) 1 5 BFL(pt.5) 6 7 Y1 = Distance from top of steel flange to any of the seven tabulated PNA locations Composite Beam - AISC Manual 14th Ed
38
Composite Beam - AISC Manual 14th Ed
Bending Strength To reach fully composite strength, shear studs must transfer SQn for Y1 = 0 (maximum value) listed in Table 3-19. This is equivalent to value C* in calculations (handout). Composite Beam - AISC Manual 14th Ed
39
Composite Beam - AISC Manual 14th Ed
Shear Stud Strength Composite Beam - AISC Manual 14th Ed
40
Composite Beam - AISC Manual 14th Ed
Strength of each stud, Qn Equation I8-1 limits value to crushing of concrete around the shear stud. limits value to strength of individual shear studs. Note that this indicates that push-out of a stud through a rib could be minimized by increasing Fu of the stud, which is not realistic. The equations assume standard materials. Composite Beam - AISC Manual 14th Ed
41
Composite Beam - AISC Manual 14th Ed
Asa = cross sectional area of shear stud Ec = modulus of elasticity of concrete Fu = shear stud minimum tensile strength (typically 65ksi) Rg accounts for number of studs welded in each deck rib and wr/hr. Values are 1.0, 0.85 or 0.7. Rp accounts for deck rib orientation with respect to the beam, stud engagement in the concrete above the rib, and weak or strong stud location. Values are 0.75 or 0.6. Composite Beam - AISC Manual 14th Ed
42
Strength, Qn, for one shear stud Table 3-21
Composite Beam - AISC Manual 14th Ed
43
Limitations on shear stud placement
for shear studs placed in metal decking: Center-Center Spacing: > 4 times diameter ≤ 8 times slab thickness ≤ 36 inches Shear Stud Diameter: ≤ 3/4” ≤ 2.5 times flange thickness unless over web Composite Beam - AISC Manual 14th Ed
44
Composite Beam - AISC Manual 14th Ed
Composite strength requires that shear studs transfer SQn to each side of the maximum moment in the span. If SQn strength of the shear studs is inadequate to provide fully composite action, the beam is partially composite. Composite Beam - AISC Manual 14th Ed
45
Composite Beam - AISC Manual 14th Ed
Partially Composite Beam: Bending Strength Fb = 0.90 (Wb = 1.67) Composite Beam - AISC Manual 14th Ed
46
Composite Beam - AISC Manual 14th Ed
INSERT INFORMATION: STRENGTH OF PARTIALLY COMPOSITE BEAM SECTION CALCULATIONS Handout on Calculations: PartiallyCompositeCalcs.PDF Composite Beam - AISC Manual 14th Ed
47
Composite Beam - AISC Manual 14th Ed
Partially Composite Strength can be determined by using Table 3-19. Y2 - Calculated per handout Y1 - Calculated per handout Composite Beam - AISC Manual 14th Ed
48
Composite Beam - AISC Manual 14th Ed
Partially Composite Action is limited by the total strength of shear studs. SQn listed in Table 3-19. This is equivalent to value C* in calculations (handout). Composite Beam - AISC Manual 14th Ed
49
Composite Beam - AISC Manual 14th Ed
Composite Beam: Shear Strength Composite Beam - AISC Manual 14th Ed
50
Composite Beam - AISC Manual 14th Ed
SHEAR STRENGTH It typically is assumed that the slab carries no shear forces. Therefore, strength is identical to a bare steel section. Composite Beam - AISC Manual 14th Ed
51
Composite Beam - AISC Manual 14th Ed
Deflection Calculations Composite Beam - AISC Manual 14th Ed
52
Deflection Calculations
Fully Composite Itr = transformed section moment of inertia Lower bound values of Itr are found in Table 3-20. Values assume concrete area equal to SQn/Fy rather than actual area. Composite Beam - AISC Manual 14th Ed
53
Deflection Calculations
Partially Composite Equation C-I3-4 Ieff = effective moment of inertia Is = moment of inertia of steel section only Itr = fully composite moment of inertia ΣQnr= partially composite shear transfer Cf = fully composite shear transfer Composite Beam - AISC Manual 14th Ed
54
Deflection Calculations
Partially Composite Equation C-I3-5 Seff = effective elastic section modulus Ss = elastic section modulus of steel section only Str = fully composite elastic section modulus ΣQnr= partially composite shear transfer Cf = fully composite shear transfer Composite Beam - AISC Manual 14th Ed
55
Deflection Calculations
Partially Composite Table 3-20 can be used for lower bound values of Ieff. Composite Beam - AISC Manual 14th Ed
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.