Presentation is loading. Please wait.

Presentation is loading. Please wait.

OFS Perth 2008 A multiplexed CW Brillouin system, for precise interrogation of a sensor array made from short discrete sections of optical fibre John Dakin.

Similar presentations


Presentation on theme: "OFS Perth 2008 A multiplexed CW Brillouin system, for precise interrogation of a sensor array made from short discrete sections of optical fibre John Dakin."— Presentation transcript:

1 OFS Perth 2008 A multiplexed CW Brillouin system, for precise interrogation of a sensor array made from short discrete sections of optical fibre John Dakin 1, Sanghoon Chin 2, and Luc Thévenaz 2 1 Optoelectronics Research Centre, University of Southampton jpd@orc.soton.ac.uk 2 Ecole Polytechnique Fédérale de Lausanne, Switzerland sanghoon.chin@epfl.ch; luc.thevenaz@epfl.ch

2 Summary We present, for the first time, a novel multiplexed sensing architecture for real-time monitoring of a small array of optical fibres. Signal separation, is in the frequency domain, rather than the usual time domain, and relies on each fibre having a different Brillouin shift. The ability to monitor with a 100% duty cycle gives enhanced signal to noise ratio, allowing precision measurement. We will show first the basic feasibility of the method, then show how the it may be used for precise temperature measurement.

3 Schematic diagram of basic sensing system The DFB laser pump into the fiber, via a 1W EDFA a circulator, and 3 Brillouin signals return to be mixed with part of the pump wave on a ~12 GHz photo-receiver. (The delay line is used to break coherence of the pump beam, to reduce interference between the pump wave and undesirable pump-wave residues returning from port 3 of circulator) DFB-LD PC ESA Det F3F3 F2F2 F1F1 Chamber Delay 1W Beating notes EDFAVOA B 3 B 2 B 1 c c c 1

4 Schematic diagram of basic sensing system DFB-LD PC ESA Det F3F3 F2F2 F1F1 Chamber Delay 1W Beating notes EDFAVOA B 3 B 2 B 1 c c c Configuration of the cascaded fibers 50 m of DSF15 m of DCF50 m of special fiber with small size of core diameter: 7 cm 2

5 OFS Perth 2008 Theory for Brillouin Shift in Optical Fibres The Brillouin shift is proportional to the longitudinal acoustic velocity in the glass material, mainly of the fibre core region in which the majority of energy propagates Fibres of different composition can have significantly different acoustic velocities, as the latter is a function of the density and the Young’s modulus of the glass. Doping with heavy elements will generally increase the density markedly with respect to pure silica, and many dopants also reduce the Young’s modulus, both parameters therefore tending to reduce the acoustic velocity. It is therefore relatively easy to select fibres having markedly different Brillouin shifts to suit our multiplexing method!, being acoustic velocity

6 Measured Brillouin Stokes Spectrum from the 3-fibre array This figure shows three different Brillouin Stokes signals, one from each fibre, as displayed on the electrical spectrum analyzer (ESA). 3

7 Temperature dependence of Stokes Frequency. Frequency change of the Stokes signal, as the temperature of the chamber changes, in steps, from 25 o C to 85 o C. It is clearly seen that only fiber-3 shows a variation, whilst the others scatter light at constant frequency. 4 (a) (b) 25 o C 35 o C 45 o C 55 o C 65 o C 75 o C 85 o C

8 Linear variation of the Stokes on Temp. This display shows the frequency change of the Stokes as the temperature of the chamber changes from 25 o C to 85 o C. It is clearly seen that only fiber-3 varies, whilst the others stay at the same frequency. Temp o C Brillouin Stokes shift, GHz Change in Brillouin shift MHz, relative to the 25 0 C value 25.110.7240.00 35.210.7349.3 45.210.74521.0 55.310.75530.3 65.310.76449.7 75.210.77651.351.3 85.210.78560.760.7 5

9 Precision temperature sensor VOA DFB-LD EOM FBG 1FBG 2 ProbePump 1W EDFA F1F1 F2F2 F3F3 Chamber Frequency Counter Det Delay 1-km SMF BPF To create a precise temperature sensor, the Stokes scattered light was down-converted, using a modulation sideband of the pump laser as local oscillator, to give a beat signal of order 145 MHz. NOTE: The intermediate-frequency beat signals were then mixed with a 150 MHz local oscillator in a second electrical (i.e. post-detector), down-conversion stage, to give ~ 5 MHz signal for frequency measurement. This 2 nd mixing stage will be shown in next slide. 6

10 Detection system, now showing the second (electrical) down-conversion mixing stage RF L.O signal Photoreciever: Bandwidth, 125 MHz High pass filter: Cut-off, 150 MHz Low-pass filter: Cut-off, 15 MHz Electrical down- conversion Frequency Counter + - 7

11 Results of heating and cooling cycle The counter frequency was monitored during slow heating and cooling, with a total temperature excursion of ~ 3.5 C. The magnified insert shows the short-term frequency fluctuation was only of ~10 kHz RMS, equivalent to ~ 0.01 C, despite fast (1s) update time. 8

12 Conclusions We have conceived and demonstrated a new frequency-division- multiplexed Brillouin sensor system We have shown that it is possible to get good separation of Brillouin signals by simple selection of commercial fibres We have shown that the sensor operates with low crosstalk between sensors (NOTE : WE NEED TO DEMONSTRATE THIS NEXT) We have achieved a noise-limited temperature precision of ~ ± 0.01 C 0 RMS, with a fast update time of only 1 second

13 Acknowledgements Prof John Dakin wishes to thank EPFL for granting him a short visiting professorship All the authors wish to thank Andrew Sansom, of Golledge Electronics, UK, for providing a number of complimentary filter samples at short notice.


Download ppt "OFS Perth 2008 A multiplexed CW Brillouin system, for precise interrogation of a sensor array made from short discrete sections of optical fibre John Dakin."

Similar presentations


Ads by Google