Download presentation

Presentation is loading. Please wait.

Published byGabriel Gallagher Modified over 4 years ago

1
Criando testes usando randomizações

2
m = c(120,107,110,116,114,111,113,117,114,112) > f = c(110,111,107,108,110,105,107,106,111,111) boxplot(m,f, names = c("machos", "fêmeas"))

4
require(boot) media = function(x,i)mean(x[i]) bootm = boot(m, media, 1000)

5
plot (bootm)

7
> names(bootm) [1] "t0" "t" "R" "data" "seed" "statistic" [7] "sim" "call" "stype" "strata" "weights"

8
hist(bootm$t, xlab =NULL, main = NULL )

10
hist(bootm$t, xlab ="comprimento do crânio", ylab = "freqüência",main = "Machos", freq = F ) > curve (dnorm(x, mean = 113.4, sd=3.7178),lwd = 3, add = T)

13
cranio = data.frame(m,f) > cranio m f 1 120 110 2 107 111 3 110 107 4 116 108 5 114 110 6 111 105 7 113 107 8 117 106 9 114 111 10 112 111

14
dmf = function (x,i)mean(cranio$m[i])-mean(cranio$f[i]) > bootdmf= boot(cranio,dmf, 1000) > boxplot (bootdmf$t, ylab= "diferença de comprimentos")

16
hist(bootdmf$t, xlab ="diferença de comprimento do crânio", main = NULL, freq = F ) curve (dnorm(x, mean = 4.8, sd=1.329), add = T) curve (dnorm(x, mean = 0, sd=1.329), lwd = 3, col = 2, add = T, pch = 4)

20
bootdmf ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = cranio, statistic = dmf, R = 1000) Bootstrap Statistics : original bias std. error t1* 4.8 -0.0274 1.329382

21
pmf = function (x,i)mean(cranio$m[i])/mean(cranio$f[i]) > bootpmf= boot(cranio,pmf, 1000) > bootpmf ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = cranio, statistic = pmf, R = 1000) Bootstrap Statistics : original bias std. error t1* 1.044199 -0.0002888062 0.01231848

22
quantile(bootpmf$t, c(0.01, 0.99)) 1% 99% 1.013604 1.071238 > min(bootpmf$t) [1] 1.00271

23
hist(bootpmf$t, xlab ="índice de comprimento m/f", main = NULL, freq = F ) > curve (dnorm(x, mean = 1, sd=0.01231848), add = T)

26
> hist(bootpmf$t, xlab ="índice de comprimento m/f",ylab = "densidade", main = NULL, freq = F ) > curve (dnorm(x, mean = 1, sd=0.01231848), lwd = 2, col = 3,add = T) > curve (dnorm(x, mean = 1.044199, sd=0.01231848), lwd = 2, col = 1,add = T)

Similar presentations

OK

1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 5 = More of chapter 3 Agenda:

1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 5 = More of chapter 3 Agenda:

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google

Ppt on front office operation Joints anatomy and physiology ppt on cells Ppt on conventional energy sources Ppt on earth dam breach Download ppt on computer vs books essays Ppt on stock market in india Ppt on excess demand and deficient demand Ppt on water resources in civil engineering Ppt on different types of transport Ppt on networking related topics to accounting