Download presentation

Published byAudrey Longsworth Modified over 10 years ago

1
**Graph Linear Systems Written in Standard Form**

2
**Types of Linear Equations**

Slope Intercept Form: y = mx + b You have used this one the most. If you have your slope and y-intercept, you can graph a line or even a system of equations (two lines). Standard Form: Ax + By = C “A” is the coefficient of “x.” “B” is the coefficient of “y.” “C” is a number (a constant)

3
**What type of Equation is this?**

y = 2x -9 3x – 4y = 18 -x + 19y = 5 y = ½ x + 4 14x + y = 3 y = -2/3x – 9/2 Slope-Intercept Form Standard Form

4
**Standard Form: Ax + By = C**

To graph an equation in standard form, you use the x- and y-intercepts. The x-intercept is: “What is x if y is zero?” (# , 0) The y-intercept is: “What is y if x is zero?” (0, #)

5
**Find the x- and y- intercepts of the following equations:**

4x + 2y = 12 3x – y = 6 -5x + 4y = 20 9x – 12y = -36 (3, 0) & (0, 6) (2, 0) & (0, -6) (-4, 0) & (0, 5) (-4, 0) & (0, 3)

6
**It is where the two lines intersect.**

What does “Solving a Linear System” mean? It is where the two lines intersect.

7
**Graph to solve the linear system.**

2x – y = 2 4x + 3y = 24 Since the equations are in standard form, find the x- and y-intercepts to graph. 2x – y = 2 2x – 0 = 2 2x = 2 x = (1, 0) 2(0) – y = 2 -y = 2 y = (0, -2) 4x + 3y = 24 4x + 3(0) = 24 4x = 24 x = (6, 0) 4(0) + 3y = 24 3y = 24 y = (0, 8)

8
**Graph to solve the linear system.**

2x – y = Intercepts are (1, 0) & (0, -2) 4x + 3y = 24 Intercepts are (6, 0) & (0, 8) Where do the lines intersect? (3, 4) is the solution to this system of linear equations.

9
**Graph to solve the linear system.**

-4x – 2y = -12 4x + 8y = -24 Since the equations are in standard form, find the x- and y-intercepts to graph. -4x – 2y = -12 -4x – 2(0) = -12 -4x = -12 x = (3, 0) -4(0) – 2y = -12 -2y = -12 y = (0, 6) 4x + 8y = -24 4x + 8(0) = -24 4x = -24 x = (-6, 0) 4(0) + 8y = -24 8y = -24 y = (0, -3)

10
**Graph to solve the linear system.**

-4x – 2y = -12 Intercepts are (3, 0) & (0, 6) 4x + 8y = Intercepts are (-6, 0) & (0, -3) Where do the lines intersect? (6, -6) is the solution to this system of linear equations.

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google