# Section 7.2. Mean of a probability distribution is the long- run average outcome, µ, or µ x. Also called the expected value of x, or E(X). µ x = x i P.

## Presentation on theme: "Section 7.2. Mean of a probability distribution is the long- run average outcome, µ, or µ x. Also called the expected value of x, or E(X). µ x = x i P."— Presentation transcript:

Section 7.2

Mean of a probability distribution is the long- run average outcome, µ, or µ x. Also called the expected value of x, or E(X). µ x = x i P i Example: X heads in four coin tosses. Find the mean of X. Xi01234Xi01234 P i.0625.25.375.25.0625

Inhabitants: 1 2 3 4 5 6 7 Proportion:.25.32.17.15.07.03.01 Find mean household size.

In a sample that uses mean x to estimate the value of the population mean µ, as the # of observations increases, mean x eventually approaches mean µ.

1. If X is a random variable and a and b are fixed numbers, then: µ a+bx = a + bµ x 2. If X and Y are random variables, then: µ X+Y = µ X + µ Y Example: Dan (X) and Danna (Y) are on a math team. Each takes 10 tests on a variety of concepts. Their scores are then combined and averaged for the team score. µ X = 82 µ Y = 86 Find the mean score of the team, µ X+Y

σ x 2 Variance of random variable X: σ x 2 = (x i - µ X ) 2 p i Example: Given the following distribution, find the mean and standard deviation: Units Sold 1000 3000 5000 10,000 Probability.1.3.4.2

1. If X is a random variable and a and b are fixed numbers, then σ 2 a+bx = b 2 σ x 2 2. If X and Y are independent random variables, then σ 2 x+y = σ x 2 + σ y 2 σ 2 x-y = σ x 2 + σ y 2 3. What about standard deviation?

Two golf players, Jake(X) and Carrine(Y), have the following stats: µ x = 110, σ x = 10 µ y = 100, σ y = 8 Find the difference in their mean scores. Find the variance of the difference between their scores. Find the standard deviation of the difference in their scores.

Download ppt "Section 7.2. Mean of a probability distribution is the long- run average outcome, µ, or µ x. Also called the expected value of x, or E(X). µ x = x i P."

Similar presentations